The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A260914 Triangle read by rows: T(n,g) = number of general immersions of a circle with n crossings in a surface of arbitrary genus g (the circle is not oriented, the surface is not oriented). 6

%I #21 Sep 08 2022 08:46:13

%S 1,2,1,6,5,1,19,45,22,0,76,335,427,56,0,376,3101,7557,3681,0,0,2194,

%T 29415,124919,139438,17398,0,0,14614,295859,1921246,4098975,1768704,0,

%U 0,0,106421,3031458,29479410,102054037,99304511,11262088,0,0,0

%N Triangle read by rows: T(n,g) = number of general immersions of a circle with n crossings in a surface of arbitrary genus g (the circle is not oriented, the surface is not oriented).

%C When transposed, displayed as an upper right triangle, the first line g = 0 of the table gives the number of immersions of a circle with n double points in a sphere (spherical curves) starting with n=1, the second line g = 1 gives immersions in a torus, etc.

%C Row g=0 is A008989 starting with n = 1.

%C For g > 0 the immersions are understood up to stable geotopy equivalence (the counted curves cannot be immersed in a surface of smaller genus). - _Robert Coquereaux_, Nov 23 2015

%H R. Coquereaux, J.-B. Zuber, <a href="http://arxiv.org/abs/1507.03163">Maps, immersions and permutations</a>, arXiv preprint arXiv:1507.03163, 2015. Also J. Knot Theory Ramifications 25, 1650047 (2016), DOI: http://dx.doi.org/10.1142/S0218216516500474

%e The transposed triangle starts:

%e 1 2 6 19 76 376 2194 14614 106421

%e 1 5 45 335 3101 29415 295859 3031458

%e 1 22 427 7557 124919 1961246 29479410

%e 0 56 3681 139438 4098975 102054037

%e 0 0 17398 1768704 99394511

%e 0 0 0 11262088

%e 0 0

%o (Magma) /* Example n := 6 */

%o n:=6;

%o n; // n: number of crossings

%o G:=Sym(2*n);

%o doubleG := Sym(4*n);

%o genH:={};

%o for j in [1..(n-1)] do v := G!(1,2*j+1)(2, 2*j+2); Include(~genH,v) ; end for;

%o H := PermutationGroup< 2*n |genH>; // The H=S(n) subgroup of S(2n)

%o cardH:=#H;

%o cardH;

%o rho:=Identity(G); for j in [0..(n-1)] do v := G!(2*j+1, 2*j+2) ; rho := rho*v ; end for;

%o cycrho := PermutationGroup< 2*n |{rho}>; // The cyclic subgroup Z2 generated by rho (mirroring)

%o Hcycrho:=sub<G|[H,cycrho]>; // The subgroup generated by H and cycrho

%o cardZp:= Factorial(2*n-1);

%o beta:=G!Append([2..2*n],1); // A typical circular permutation

%o Cbeta:=Centralizer(G,beta);

%o bool, rever := IsConjugate(G,beta,beta^(-1));

%o cycbeta := PermutationGroup< 2*n |{rever}>;

%o Cbetarev := sub<G|[Cbeta,cycbeta]>;

%o psifct := function(per);

%o perinv:=per^(-1);

%o res:= [IsOdd(j) select (j+1)^per else j-1 + 2*n : j in [1..2*n] ];

%o resbis := [IsOdd((j-2*n)^perinv) select (j-2*n)^perinv +1 +2*n else ((j-2*n)^perinv -1)^per : j in [2*n+1..4*n] ];

%o res cat:= resbis;

%o return doubleG!res;

%o end function;

%o numberofcycles := function(per); ess := CycleStructure(per); return &+[ess[i,2]: i in [1..#ess]]; end function;

%o supernumberofcycles := function(per); return numberofcycles(psifct(per)) ; end function;

%o // result given as a list genuslist (n+2-2g)^^multiplicity where g is the genus

%o // Case UU

%o dbl, dblsize := DoubleCosetRepresentatives(G,Hcycrho,Cbetarev); #dblsize;

%o genuslist := {* supernumberofcycles(beta^(dbl[j]^(-1))) : j in [1..#dblsize] *}; genuslist;

%o quit;

%o # _Robert Coquereaux_, Nov 23 2015

%Y The sum over all genera g for a fixed number n of crossings is given by sequence A260912. Cf. A008989, A260285, A260848, A260885.

%K nonn,hard,tabl

%O 1,2

%A _Robert Coquereaux_, Aug 04 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 13:00 EDT 2024. Contains 373105 sequences. (Running on oeis4.)