The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A260912 Sum over the genera g of the number of immersions of an unoriented circle with n crossings in an unoriented surface of genus g. 4
1, 3, 12, 86, 894, 14715, 313364, 8139398, 245237925, 8382002270, 319994166042, 13492740284184, 622738642693202, 31225868370080949, 1690360086869176780, 98252177808632109236, 6103194081506193327048, 403488941845715112039425, 28286698447226523233226110, 2096044354918091666701275248 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
a(n) is the sum over the n-th row of triangle A260914.
a(n) is also the number of double cosets of H\G/K where G is the symmetric group S(2n), H is the subgroup generated by the centralizer of the circular permutation β = (1,2,3,...,2n) of G together with the permutation (2, 2n)(3, 2n-1)(4, 2n-2)...(n, n+2) that conjugates β and β-1, K is a subgroup of G generated by the permutation ρ = (1,2)(3,4)...(2n-3,2n-2)(2n-1,2n), using cycle notation, and the subgroup (isomorphic with S(n)) that commutes with ρ and permutes odd resp. even integers among themselves.
For g > 0 the immersions are understood up to stable geotopy equivalence (the counted curves cannot be immersed in a surface of smaller genus). - Robert Coquereaux, Nov 23 2015
LINKS
R. Coquereaux, J.-B. Zuber, Maps, immersions and permutations, arXiv preprint arXiv:1507.03163, 2015. Also J. Knot Theory Ramifications 25, 1650047 (2016), DOI: http://dx.doi.org/10.1142/S0218216516500474
PROG
(Magma) /* For all n */
nbofdblecos := function(G, H, K);
CG := Classes(G); nCG := #CG; oG := #G; CH := Classes(H); nCH := #CH; oH := #H; CK := Classes(K); nCK := #CK; oK := #K;
resH := []; for mu in [1..nCG] do Gmurep := CG[mu][3]; Hmupositions := {j: j in [1..nCH] | CycleStructure(CH[j][3]) eq CycleStructure(Gmurep)};
Hmugoodpositions := {j : j in Hmupositions | IsConjugate(G, CH[j][3], Gmurep) eq true}; bide := 0; for j in Hmugoodpositions do bide := bide + CH[j][2]; end for; Append(~resH, bide); end for;
resK := []; for mu in [1..nCG] do Gmurep := CG[mu][3]; Kmupositions := {j: j in [1..nCK] | CycleStructure(CK[j][3]) eq CycleStructure(Gmurep)};
Kmugoodpositions := {j : j in Kmupositions | IsConjugate(G, CK[j][3], Gmurep) eq true}; bide := 0; for j in Kmugoodpositions do bide := bide + CK[j][2]; end for; Append(~resK, bide); end for;
ndcl := 0; tot := 0; for mu in [1..nCG] do tot := tot + resH[mu]* resK[mu]/CG[mu][2]; end for; ndcl:= tot * oG/(oH * oK); return ndcl;
end function;
UUfull := function(n); G:=Sym(2*n); genH:={}; for j in [1..(n-1)] do v := G!(1, 2*j+1)(2, 2*j+2); Include(~genH, v) ; end for;
H := PermutationGroup< 2*n |genH>;
beta:=G!Append([2..2*n], 1); Cbeta:=Centralizer(G, beta); bool, rever := IsConjugate(G, beta, beta^(-1)); cycbeta := PermutationGroup< 2*n |{rever}>;
Cbetarev := sub<G|[Cbeta, cycbeta]>;
rho:=Identity(G); for j in [0..(n-1)] do v := G ! (2*j+1, 2*j+2) ; rho := rho*v ; end for; cycrho := PermutationGroup< 2*n |{rho}>;
Hcycrho:=sub<G|[H, cycrho]>;
return nbofdblecos(G, Hcycrho, Cbetarev); end function;
[UUfull(n) : n in [1..10]]; //
CROSSREFS
Sequence in context: A232934 A077047 A074505 * A266788 A039305 A174463
KEYWORD
nonn
AUTHOR
Robert Coquereaux, Aug 04 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 03:59 EDT 2024. Contains 372549 sequences. (Running on oeis4.)