The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259094 From the Lecture Hall Theorem: array read by antidiagonals: T(n,k) = number of partitions of n into odd parts of size < 2k. 10
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 1, 1, 1, 1, 2, 2, 3, 4, 3, 1, 1, 1, 1, 2, 2, 3, 4, 4, 3, 1, 1, 1, 1, 2, 2, 3, 4, 5, 5, 4, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 6, 4, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 7, 4, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 8, 5, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,14
COMMENTS
The Lecture Hall Theorem states that (the number of partitions (d1,d2,...,dn) of m such that 0 <= d1/1 <= d2/2 <= ... <= dn/n) equals (the number of partitions of m into odd parts less than 2n}.
LINKS
M. Bousquet-Mélou, K. Eriksson, Lecture hall partitions, The Ramanujan J. 1 (1997) 101-111.
M. Bousquet-Mélou, K. Eriksson, Lecture hall partitions II, The Ramanujan J. 1 (1997) 165-185.
Mireille Bousquet-Mélou, Kimmo Eriksson, A Refinement of the Lecture Hall Theorem, Journal of Combinatorial Theory, Series A, Volume 86, Issue 1, April 1999, Pages 63-84
Niklas Eriksen, A simple bijection between lecture hall partitions and partitions into odd integers Formal Power Series and Algebraic Combinatorics. 2002.
A. J. Yee, On combinatorics of lecture hall partitions, The Ramanujan J. 5 (2001) 247-262.
EXAMPLE
The array begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ...
1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13,13,14 ...
1,1,1,2,2,3,4,4,5,6,7,8,9,10,11,13,14,15,17,18,20,22,23,25,27,29,31,33,35,37,40,42,44,47,49,52,55 ...
1,1,1,2,2,3,4,5,6,7,9,10,12,14,16,19,21,24,27,30,34,38,42,46,51,56,61,67,73,79,86,93,100,108,116 ...
1,1,1,2,2,3,4,5,6,8,10,11,14,16,19,23,26,30,35,40,45,52,58,65,74,82,91,102,113,124,138,151,165,182 ...
1,1,1,2,2,3,4,5,6,8,10,12,15,17,21,25,29,34,40,46,53,62,70,80,91,103,116,131,147,164,184,204,227 ...
1,1,1,2,2,3,4,5,6,8,10,12,15,18,22,26,31,36,43,50,58,68,78,90,103,118,134,153,173,195,220,247,277 ...
1,1,1,2,2,3,4,5,6,8,10,12,15,18,22,27,32,37,45,52,61,72,83,96,111,128,146,168,191,217,247,279,314 ...
...
The successive antidiagonals are:
[1]
[1, 1]
[1, 1, 1]
[1, 1, 1, 1]
[1, 1, 1, 2, 1]
[1, 1, 1, 2, 2, 1]
[1, 1, 1, 2, 2, 2, 1]
[1, 1, 1, 2, 2, 3, 3, 1]
[1, 1, 1, 2, 2, 3, 4, 3, 1]
[1, 1, 1, 2, 2, 3, 4, 4, 3, 1]
[1, 1, 1, 2, 2, 3, 4, 5, 5, 4, 1]
[1, 1, 1, 2, 2, 3, 4, 5, 6, 6, 4, 1]
[1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 7, 4, 1]
[1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 8, 5, 1]
...
MAPLE
G:=n->mul(1/(1-q^(2*i-1)), i=1..n);
M:=41;
G2:=n->seriestolist(series(G(n), q, M));
for n from 1 to 10 do lprint(G2(n)); od:
H:=n->[seq(G2(n-i+1)[i], i=1..n)];
for n from 1 to 14 do lprint(H(n)); od:
MATHEMATICA
G[n_] := Product[1/(1-q^(2*i-1)), {i, 1, n}];
M = 41;
G2[n_] := CoefficientList[Series[G[n], {q, 0, M}], q];
For[n = 1, n <= 10, n++; Print[G2[n]]];
H[n_] := Table[G2[n-i+1][[i]], {i, 1, n}];
Reap[For[n = 1, n <= 14, n++, Print[H[n]]; Sow[H[n]]]][[2, 1]] // Flatten (* Jean-François Alcover, Jun 04 2017, translated from Maple *)
CROSSREFS
Many rows of the array are already in the OEIS: A008620, A008672, A008673, A008674, A008675, A287997, A287998, A288000, A288001.
Sequence in context: A163100 A139038 A322812 * A306741 A274193 A238384
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jun 19 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 11:04 EDT 2024. Contains 372540 sequences. (Running on oeis4.)