The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A249935 G.f. satisfies: A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} x^k * {[x^k] A(x)^(2*n)}. 4
1, 1, 3, 5, 25, 42, 203, 352, 1863, 3221, 17028, 29700, 160011, 279869, 1515002, 2660203, 14496687, 25519004, 139589213, 246299404, 1351864004, 2389786433, 13150095286, 23284570446, 128400299029, 227675571607, 1257685572691, 2232848363136, 12352579717154, 21954187917378 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Here [x^k] A(x)^(2*n) denotes the coefficient of x^k in A(x)^(2*n).
LINKS
FORMULA
G.f. satisfies: A(x) = (1 + 2*x^2*G'(x^2)/G(x^2)) / (1 - x*G(x^2)^2), where A(x) = G(x/A(x)^2) and G(x) = A(x*G(x)^2) = sqrt( (1/x)*Series_Reversion(x/A(x)^2) ).
a(n) ~ c * d^n / sqrt(n), where d = 3.18978759025890966... , c = 0.5263107214182... if n is even and c = 0.2984906301198... if n is odd. - Vaclav Kotesovec, Nov 29 2014
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 5*x^3 + 25*x^4 + 42*x^5 + 203*x^6 + 352*x^7 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 16*x^3 + 69*x^4 + 164*x^5 + 665*x^6 +...
A(x)^4 = 1 + 4*x + 18*x^2 + 60*x^3 + 251*x^4 + 828*x^5 + 3208*x^6 +...
A(x)^6 = 1 + 6*x + 33*x^2 + 140*x^3 + 630*x^4 + 2478*x^5 + 10144*x^6 +...
A(x)^8 = 1 + 8*x + 52*x^2 + 264*x^3 + 1306*x^4 + 5824*x^5 + 25676*x^6 +...
GENERATING METHOD.
The initial terms, k=0..n, of the (2*n)-th power of g.f. A(x) begin:
n=0: [1];
n=2: [1, 2];
n=4: [1, 4, 18];
n=6: [1, 6, 33, 140];
n=8: [1, 8, 52, 264, 1306];
n=10:[1, 10, 75, 440, 2395, 11832];
n=12:[1, 12, 102, 676, 4029, 21756, 111204];
n=14:[1, 14, 133, 980, 6356, 37170, 203406, 1049764];
n=16:[1, 16, 168, 1360, 9540, 60000, 350056, 1918816, 10031418];
n=18:[1, 18, 207, 1824, 13761, 92556, 573477, 3325212, 18304947, 96438254]; ...
from which the antidiagonal sums form this sequence:
a(0) = 1;
a(1) = 1;
a(2) = 1 + 2 = 3;
a(3) = 1 + 4 = 5;
a(4) = 1 + 6 + 18 = 25;
a(5) = 1 + 8 + 33 = 42;
a(6) = 1 + 10 + 52 + 140 = 203;
a(7) = 1 + 12 + 75 + 264 = 352; ...
ALTERNATE GENERATING METHOD.
Define G(x) such that G(x) = A(x*G(x)^2) = sqrt( (1/x)*Series_Reversion(x/A(x)^2) ):
G(x) = 1 + x + 5*x^2 + 28*x^3 + 199*x^4 + 1474*x^5 + 11668*x^6 + 95316*x^7 + 802213*x^8 + 6892525*x^9 + 60259964*x^10 +...
then A(x) = (1 + 2*x^2 * G'(x^2)/G(x^2)) / (1 - x*G(x^2)^2).
Note that 1 + 2*x^2 * G'(x^2)/G(x^2) begins:
1 + 2*x^2 + 18*x^4 + 140*x^6 + 1306*x^8 + 11832*x^10 + 111204*x^12 +...
where the coefficients form the main diagonal of the above triangle.
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*sum(k=0, m, x^k*polcoeff((A+x*O(x^m))^(2*m), k))+x*O(x^n))); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
(PARI) /* ALTERNATE GENERATING METHOD (faster) */
{a(n)=local(A=1+x, G=1); for(i=0, #binary(n)+1, G=sqrt(1/x*serreverse(x/A^2 +x^2*O(x^n))); A=(1+2*x^2*subst(G'/G, x, x^2))/(1-x*subst(G^2, x, x^2))); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A347947 A208800 A356274 * A364961 A009002 A119882
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 24 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 12 03:52 EDT 2024. Contains 373321 sequences. (Running on oeis4.)