The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A249786 E.g.f. A(x) satisfies: (A(x)^2 - 4*x)^3 = (2 - A(x)^3)^2. 6
1, 1, -2, 6, -48, 360, -4800, 58800, -1088640, 18627840, -440294400, 9699782400, -278672486400, 7519473561600, -254211897139200, 8123999659776000, -315817889587200000, 11668326078689280000, -512656874530504704000, 21503534793369108480000, -1053509824992697712640000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
E.g.f.: (1 + 3*Series_Reversion(G(x)))^(1/3), where G(x) = ((1+3*x)^(2/3) - (1-3*x)^(2/3))/4 = x + Sum_{n>=1} x^(2*n+1)/(2*n+1)! * Product_{k=0..n-1} (6*k+1)*(6*k+4).
E.g.f. A(x) satisfies:
(1) A(x)^3 + A(-x)^3 = 2.
(2) A(x)^2 - A(-x)^2 = 4*x.
(3) x = (A(x)^2 - (2 - A(x)^3)^(2/3))/4.
a(n) ~ (-1)^(n+1) * 2^(4*n/3-1/6) * n^(n-1) / exp(n). - Vaclav Kotesovec, Nov 15 2014
EXAMPLE
E.g.f.: A(x) = 1 + x - 2*x^2/2! + 6*x^3/3! - 48*x^4/4! + 360*x^5/5! - 4800*x^6/6! + 58800*x^7/7! - 1088640*x^8/8! + 18627840*x^9/9! - 440294400*x^10/10! +...
where
A(x)^2 = 1 + 2*x - 2*x^2/2! - 24*x^4/4! - 1680*x^6/6! - 295680*x^8/8! - 97977600*x^10/10! - 52583731200*x^12/12! - 41661536716800*x^14/14! +...
A(x)^3 = 1 + 3*x - 12*x^3/3! - 360*x^5/5! - 40320*x^7/7! - 9797760*x^9/9! - 4151347200*x^11/11! - 2717056742400*x^13/13! - 2542118971392000*x^15/15! +...
Thus the coefficients of odd powers of x in A(x)^2 equal zero:
[1, 2, -2, 0, -24, 0, -1680, 0, -295680, 0, -97977600, 0, -52583731200, 0,...],
while the coefficients of even powers of x in A(x)^3 equal zero:
[1, 3, 0, -12, 0, -360, 0, -40320, 0, -9797760, 0, -4151347200, 0, ...],
after a few initial terms.
EXPLICIT FORMULA.
Let G(x) = ((1+3*x)^(2/3) - (1-3*x)^(2/3))/4, which begins
G(x) = x + 4*x^3/3! + 4*70*x^5/5! + 4*70*208*x^7/7! + 4*70*208*418*x^9/9! + 4*70*208*418*700*x^11/11! +...+ [Product_{k=0..n-1} (6*k+1)*(6*k+4)]*x^(2*n+1)/(2*n+1)! +...
then (A(x)^3 - 1)/3 = Series_Reversion(G(x)).
The coefficients in G(x) form triple factorials (A007559) that begin:
[1, 0, 4, 0, 280, 0, 58240, 0, 24344320, 0, 17041024000, 0, ...].
PROG
(PARI) /* Explicit formula: */
{a(n)=local(A, X=x+x^2*O(x^n), G=((1+3*X)^(2/3) - (1-3*X)^(2/3))/4);
A=(1 + 3*serreverse(G))^(1/3); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* Formula using series expansion: */
{a(n)=local(A, G=x + sum(m=1, n\2+1, x^(2*m+1)/(2*m+1)!*prod(k=0, m-1, (6*k+1)*(6*k+4)) +x^2*O(x^n)));
A=(1 + 3*serreverse(G))^(1/3); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* Alternating zero coefficients in A(x)^2 and A(x)^3: */
{a(n)=local(A=[1, 1], E=1, M); for(i=1, n, A=concat(A, 0); M=#A;
E=sum(m=0, M-1, A[m+1]*x^m/m!)+x*O(x^M);
A[M]=if(M%2==0, -(M-1)!*Vec(E^2/2)[M], -(M-1)!*Vec(E^3/3)[M])); A[n+1]}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A052586 A052554 A228159 * A292934 A195203 A365285
KEYWORD
sign
AUTHOR
Paul D. Hanna, Nov 13 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 21:06 EDT 2024. Contains 372703 sequences. (Running on oeis4.)