The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A246056 G.f.: Sum_{n>=0} x^n / (1-2*x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * 2^k * x^k] * [Sum_{k=0..n} C(n,k)^2 * 3^k * x^k]. 12
1, 3, 16, 99, 681, 4950, 37303, 288399, 2272318, 18167553, 146950227, 1199921310, 9875193549, 81811617237, 681621711306, 5706874227051, 47985527200311, 405002888376840, 3429714479025247, 29130993220171449, 248095567594494634, 2118053534177686959, 18122259456592141785 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Conjecture: a(n) == 1 (mod 3) when n = 2*A005836(k) for k >= 0, and a(n) == 0 (mod 3) otherwise, where A005836 gives numbers whose base-3 representation contains no 2.
LINKS
FORMULA
G.f.: Sum_{n>=0} x^n / (1-x)^(2*n+1) * [Sum_{k=0..n} C(n,k)^2 * x^k] * [Sum_{k=0..n} C(n,k)^2 * 2^(n-k) * 3^k * x^k].
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * Sum_{j=0..k} C(k,j)^2 * 2^(k-j) * 3^j * x^j.
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * 2^(n-k) * Sum_{j=0..k} C(k,j)^2 * 3^j * x^j.
a(n) = Sum_{k=0..[n/2]} 3^k * Sum_{j=0..n-2*k} C(n-k, k+j)^2 * C(k+j, j)^2 * 2^j.
Recurrence: (n-5)*(n-4)*(n-2)*n^2*a(n) = 3*(n-5)*(n-4)*(4*n^3 - 12*n^2 + 10*n - 3)*a(n-1) - (n-5)*(n-4)*(n-1)*(26*n^2 - 78*n + 61)*a(n-2) - 3*(n-5)*(n-2)*(8*n^3 - 56*n^2 + 118*n - 79)*a(n-3) + (n-3)*(125*n^4 - 1500*n^3 + 6197*n^2 - 10182*n + 5414)*a(n-4) - 9*(n-4)*(n-1)*(8*n^3 - 88*n^2 + 310*n - 341)*a(n-5) - 9*(n-5)*(n-2)*(n-1)*(26*n^2 - 234*n + 529)*a(n-6) + 81*(n-2)*(n-1)*(4*n^3 - 60*n^2 + 298*n - 489)*a(n-7) - 81*(n-6)^2*(n-4)*(n-2)*(n-1)*a(n-8). - Vaclav Kotesovec, Aug 24 2014
a(n) ~ c * d^n / n, where d = 8.9576182866823126497141284131... is the root of the equation 81 - 324*d + 234*d^2 + 72*d^3 - 125*d^4 + 24*d^5 + 26*d^6 - 12*d^7 + d^8 = 0, and c = 0.455454371861834589008839056170849399984539880764403809033969331822... . - Vaclav Kotesovec, Aug 24 2014
EXAMPLE
G.f.: A(x) = 1 + 3*x + 16*x^2 + 99*x^3 + 681*x^4 + 4950*x^5 + 37303*x^6 + ...
where the g.f. is given by the binomial series identity:
A(x) = 1/(1-2*x) + x/(1-2*x)^3 * (1 + 2*x) * (1 + 3*x)
+ x^2/(1-2*x)^5 * (1 + 2^2*2*x + 4*x^2) * (1 + 2^2*3*x + 9*x^2)
+ x^3/(1-2*x)^7 * (1 + 3^2*2*x + 3^2*4*x^2 + 8*x^3) * (1 + 3^2*3*x + 3^2*9*x^2 + 27*x^3)
+ x^4/(1-2*x)^9 * (1 + 4^2*2*x + 6^2*4*x^2 + 4^2*8*x^3 + 16*x^4) * (1 + 4^2*3*x + 6^2*9*x^2 + 4^2*27*x^3 + 81*x^4)
+ x^5/(1-2*x)^11 * (1 + 5^2*2*x + 10^2*4*x^2 + 10^2*8*x^3 + 5^2*16*x^4 + 32*x^5) * (1 + 5^2*3*x + 10^2*9*x^2 + 10^2*27*x^3 + 5^2*81*x^4 + 243*x^5) + ...
equals the series
A(x) = 1/(1-x) + x/(1-x)^3 * (1 + x) * (2 + 3*x)
+ x^2/(1-x)^5 * (1 + 2^2*x + x^2) * (4 + 2^2*2*3*x + 9*x^2)
+ x^3/(1-x)^7 * (1 + 3^2*x + 3^2*x^2 + x^3) * (8 + 3^2*4*3*x + 3^2*2*9*x^2 + 27*x^3)
+ x^4/(1-x)^9 * (1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4) * (16 + 4^2*8*3*x + 6^2*4*9*x^2 + 4^2*2*27*x^3 + 81*x^4)
+ x^5/(1-x)^11 * (1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5) * (32 + 5^2*16*3*x + 10^2*8*9*x^2 + 10^2*4*27*x^3 + 5^2*2*81*x^4 + 243*x^5) + ...
We can also express the g.f. by another binomial series identity:
A(x) = 1 + x*(2 + (1+3*x)) + x^2*(4 + 2^2*2*(1+3*x) + (1+2^2*3*x+9*x^2))
+ x^3*(8 + 3^2*4*(1+3*x) + 3^2*2*(1+2^2*3*x+9*x^2) + (1+3^2*3*x+3^2*9*x^2+27*x^3))
+ x^4*(16 + 4^2*8*(1+3*x) + 6^2*4*(1+2^2*3*x+9*x^2) + 4^2*2*(1+3^2*3*x+3^2*9*x^2+27*x^3) + (1+4^2*3*x+6^2*9*x^2+4^2*27*x^3+81*x^4))
+ x^5*(32 + 5^2*16*(1+3*x) + 10^2*8*(1+2^2*3*x+9*x^2) + 10^2*4*(1+3^2*3*x+3^2*9*x^2+27*x^3) + 5^2*2*(1+4^2*3*x+6^2*9*x^2+4^2*27*x^3+81*x^4) + (1+5^2*3*x+10^2*9*x^2+10^2*27*x^3+5^2*81*x^4+243*x^5)) + ...
equals the series
A(x) = 1 + x*(1 + (2+3*x)) + x^2*(1 + 2^2*(2+3*x) + (4+2^2*2*3*x+9*x^2))
+ x^3*(1 + 3^2*(2+3*x) + 3^2*(4+2^2*2*3*x+9*x^2) + (8+3^2*4*3*x+3^2*2*9*x^2+27*x^3))
+ x^4*(1 + 4^2*(2+3*x) + 6^2*(4+2^2*2*3*x+9*x^2) + 4^2*(8+3^2*4*3*x+3^2*2*9*x^2+27*x^3) + (16+4^2*8*3*x+6^2*4*9*x^2+4^2*2*27*x^3+81*x^4))
+ x^5*(1 + 5^2*(2+3*x) + 10^2*(4+2^2*2*3*x+9*x^2) + 10^2*(8+3^2*4*3*x+3^2*2*9*x^2+27*x^3) + 5^2*(16+4^2*8*3*x+6^2*4*9*x^2+4^2*2*27*x^3+81*x^4) + (32+5^2*16*3*x+10^2*8*9*x^2+10^2*4*27*x^3+5^2*2*81*x^4+243*x^5)) + ...
MATHEMATICA
Table[Sum[3^k * Sum[Binomial[n-k, k+j]^2 * Binomial[k+j, j]^2 * 2^j, {j, 0, n-2*k}], {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 24 2014 *)
PROG
(PARI) /* By definition: */
{a(n)=local(A=1); A=sum(m=0, n, x^m/(1-2*x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2 * 2^k * x^k) * sum(k=0, m, binomial(m, k)^2 * 3^k *x^k) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* By a binomial identity: */
{a(n)=local(A=1); A=sum(m=0, n, x^m/(1-x)^(2*m+1) * sum(k=0, m, binomial(m, k)^2*2^(m-k)*3^k*x^k) * sum(k=0, m, binomial(m, k)^2*x^k) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* By a binomial identity: */
{a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * 2^(m-k)* sum(j=0, k, binomial(k, j)^2 * 3^j * x^j)+x*O(x^n))), n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* By a binomial identity: */
{a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2 * sum(j=0, k, binomial(k, j)^2 * 2^(k-j) * 3^j * x^j)+x*O(x^n))), n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* Formula for a(n): */
{a(n)=sum(k=0, n\2, sum(j=0, n-2*k, 3^k * binomial(n-k, k+j)^2 * binomial(k+j, j)^2 * 2^j))}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A303831 A193037 A363573 * A361446 A360638 A091641
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 23 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 9 03:24 EDT 2024. Contains 373227 sequences. (Running on oeis4.)