The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245195 a(n) = 2^A014081(n). 4

%I #68 Mar 17 2023 15:30:33

%S 1,1,1,2,1,1,2,4,1,1,1,2,2,2,4,8,1,1,1,2,1,1,2,4,2,2,2,4,4,4,8,16,1,1,

%T 1,2,1,1,2,4,1,1,1,2,2,2,4,8,2,2,2,4,2,2,4,8,4,4,4,8,8,8,16,32,1,1,1,

%U 2,1,1,2,4,1,1,1,2,2,2,4,8,1,1,1,2,1,1,2,4,2,2,2,4,4,4,8,16,2,2,2,4,2

%N a(n) = 2^A014081(n).

%C This sequence provides a bridge between A245180 (and, presumably, A160239) and A014081.

%C See A245196 for more about this class of sequences.

%C Run length transform of A011782: 1,1,2,4,8,16,32,64,... - _Chai Wah Wu_, Oct 19 2016

%H Chai Wah Wu and Robert Israel, <a href="/A245195/b245195.txt">Table of n, a(n) for n = 0..10000</a>

%H Robert Israel, <a href="/A277560/a277560.pdf">Proof that A277560 is the same as A245195</a> [This will be modified to reflect the fact that the two sequences have now been merged]

%H Chai Wah Wu, <a href="https://arxiv.org/abs/1610.06166">Sums of products of binomial coefficients mod 2 and run length transforms of sequences</a>, arXiv:1610.06166 [math.CO], 2016.

%F The entries may be arranged into blocks of sizes 1,2,4,8,...:

%F B_0: 1,

%F B_1: 1, 2,

%F B_2: 1, 1, 2, 4,

%F B_3: 1, 1, 1, 2, 2, 2, 4, 8,

%F B_4: 1, 1, 1, 2, 1, 1, 2, 4, 2, 2, 2, 4, 4, 4, 8, 16,

%F B_5: 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 2, 2, 4, 8, 2, 2, 2, 4, 2, 2, 4, 8, 4, 4, 4, 8, 8, 8, 16, 32,

%F ...

%F Consider the block B_{k-1} containing terms a(2^(k-1)), a(2^(k-1)+1), ..., a(2^k-1). It is convenient to index the terms working backwards from the next, 2^k-th, term. For n in the range 2^(k-1) <= n < 2^k, write n = 2^k-2^r+j, with 0 <= r <= k-1 and 0 <= j < 2^(r-1), and j=0 if r=0. Then

%F (if j=0) a(2^k-2^r) = 2^(k-r-1),

%F (if j>0) a(2^k-2^r+j) = 2^(k-r-1)*a(j).

%F a(n) = A162510(A005940(1+n)). - _Antti Karttunen_, Oct 29 2016

%F From _Robert Israel_, Nov 02 2016: (Start)

%F a(2*k) = a(k).

%F a(4*k+1) = a(k).

%F a(4*k+3) = 2*a(2*k+1).

%F G.f. g(x) satisfies g(x) = x + (2*x+1)*g(x^2) - x*g(x^4). (End)

%F Also, a(n) = Sum_{k=0..floor(n/2)} ((binomial(n,2k)*binomial(n,k)) mod 2). - _Chai Wah Wu_, Oct 19 2016 and _Robert Israel_, Nov 04 2016. For proof, see the article by Chai Wah Wu, Sums of products of binomial coefficients mod 2 and run length transforms of sequences, arXiv:1610.06166, or the Robert Israel link.

%p # This Maple program applies more generally to a sequence where the recurrence across a block is as follows. The parameters to be set are the sequence G(0), G(1), G(2), ... (the final terms in the blocks), and the multiplier m.

%p # For n in the range 2^(k-1) <= n < 2^k, write n = 2^k-2^r+j, with 0 <= r <= k-1 and 0 <= j < 2^(r-1), and j=0 if r=0. Then

%p # (if j=0) a(2^k-2^r) = G(k-r-1),

%p # (if j>0) a(2^k-2^r+j) = m*G(k-r-1)*a(j).

%p # Since Maple gives its lists an offset of 1, it is necessary to add 1 to the arguments of G.

%p # For the present sequence, G(n)=2^n and m=1.

%p G:=[seq(2^n,n=0..30)];

%p m:=1;

%p f:=proc(n) option remember; global m,G; local k,r,j,np;

%p if n <= 2 then G[0+1] elif n=3 then G[1+1]

%p elif n=4 then G[0+1] elif n=5 then m*G[0+1] elif n=6 then G[1+1] elif n=7 then G[2+1]

%p else

%p k:=1+floor(log[2](n)); np:=2^k-n;

%p if np=1 then r:=0; j:=0; else r:=1+floor(log[2](np-1)); j:=2^r-np; fi;

%p if j=0 then G[k-r-1+1]; else m*G[k-r-1+1]*f(j); fi;

%p fi;

%p end;

%p [seq(f(n),n=1..520)]:

%p # Setting G(n) = A083424(n) and m = 8 gives A245180. Setting G(n) = 2^n and m = 2 gives A048896.

%p A245195:=n->add(binomial(n,2*k)*binomial(n,k) mod 2, k=0..floor(n/2)): seq(A245195(n), n=0..200); # _Wesley Ivan Hurt_, Nov 01 2016

%t Table[Sum[Mod[Binomial[n, 2 k] Binomial[n, k], 2], {k, 0, n}], {n, 0, 85}] (* _Michael De Vlieger_, Oct 21 2016 *)

%o (PARI) a(n) = 2^hammingweight(bitand(n, n>>1)) \\ _Charles R Greathouse IV_, Jul 16 2016

%o (PARI) a(n) = sum(k=0, n, binomial(n, 2*k)*binomial(n,k) % 2); \\ _Michel Marcus_, Oct 21 2016

%o (Python)

%o from __future__ import division

%o def A277560(n):

%o return sum(int(not (~n & 2*k) | (~n & k)) for k in range(n//2+1))

%o (Python)

%o def A245195(n): return 1<<(n&(n>>1)).bit_count() # _Chai Wah Wu_, Feb 11 2023

%Y Cf. A014081, A245180, A160239, A048896, A245196, A005725, A005940, A011782, A106737, A162510.

%K nonn,tabf

%O 0,4

%A _N. J. A. Sloane_, Jul 24 2014

%E Changed offset to 0, merged former entry A277560 from _Chai Wah Wu_ (Oct 19 2016) with this sequence. - _N. J. A. Sloane_, Nov 05 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 7 14:59 EDT 2024. Contains 373202 sequences. (Running on oeis4.)