The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A233654 |{prime p < n: n - p = sigma(k) for some k > 0}|, where sigma(k) is the sum of all (positive) divisors of k. 5
0, 0, 1, 1, 1, 3, 1, 3, 3, 3, 3, 2, 2, 4, 4, 3, 5, 4, 4, 6, 4, 3, 5, 3, 6, 5, 5, 1, 4, 4, 7, 5, 6, 4, 8, 3, 8, 5, 5, 2, 9, 5, 10, 8, 8, 4, 10, 3, 11, 6, 10, 2, 8, 4, 11, 5, 8, 3, 12, 5, 13, 7, 7, 3, 13, 3, 14, 7, 7, 5, 12, 3, 14, 9, 11, 6, 12, 2, 16, 7, 11, 5, 12, 3, 18, 8, 12, 2, 11, 3, 19, 6, 11, 4, 13, 4, 17, 8, 10, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,6
COMMENTS
Conjecture: (i) Let n > 1 be an integer. Then we have a(2*n) > 0. Also, 2*n + 1 can be written as p + sigma(k), where p is a Sophie Germain prime and k is a positive integer.
(ii) Each odd number greater than one can be written as sigma(k^2) + phi(m), where k and m are positive integers, and phi(.) is Euler's totient function.
That a(2*n+1) > 0 for n > 1 is a consequence of Goldbach's conjecture, for, if 2*n = p + q with p and q both prime, then 2*n + 1 = p + sigma(q) = q + sigma(p).
LINKS
EXAMPLE
a(3) = 1 since 3 = 2 + 1 = 2 + sigma(1) with 2 prime.
a(7) = 1 since 7 = 3 + 4 = 3 + sigma(3) with 3 prime.
a(10) = 3 since 10 = 2 + 8 = 2 + sigma(7) with 2 prime, 10 = 3 + 7 = 3 + sigma(4) with 3 prime, and 10 = 7 + 3 = 7 + sigma(2) with 7 prime.
a(13) = 2 since 13 = 5 + 8 = 5 + sigma(7) with 5 prime, and 13 = 7 + 6 = 7 + sigma(5) with 7 prime.
a(28) = 1 since 28 = 13 + 15 = 13 + sigma(8) with 13 prime.
a(36) = 3 since 36 = 5 + 31 = 5 + sigma(16) = 5 + sigma(25) with 5 prime, 36 = 23 + 13 = 23 + sigma(9) with 23 prime, and 36 = 29 + 7 = 29 + sigma(4) with 29 prime.
a(148) = 1 since 148 = 109 + 39 = 109 + sigma(18) with 109 prime.
MATHEMATICA
f[n_]:=Sum[If[Mod[n, d]==0, d, 0], {d, 1, n}]
S[n_]:=Union[Table[f[j], {j, 1, n}]]
PQ[n_]:=n>0&&PrimeQ[n]
a[n_]:=Sum[If[PQ[n-Part[S[n], i]], 1, 0], {i, 1, Length[S[n]]}]
Table[a[n], {n, 1, 100}]
CROSSREFS
Sequence in context: A275820 A210146 A354198 * A068074 A063195 A334070
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 14 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 17:28 EDT 2024. Contains 372522 sequences. (Running on oeis4.)