The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A231201 Number of ways to write n = x + y (x, y > 0) with 2^x + y prime. 23
0, 1, 1, 1, 2, 2, 1, 1, 3, 3, 2, 2, 1, 2, 4, 4, 4, 5, 3, 2, 4, 1, 2, 1, 4, 4, 4, 2, 3, 4, 4, 4, 3, 2, 5, 4, 4, 4, 3, 5, 4, 5, 3, 4, 7, 6, 5, 2, 5, 3, 5, 7, 1, 3, 5, 5, 4, 6, 5, 4, 4, 5, 3, 1, 4, 7, 6, 5, 5, 4, 5, 7, 4, 5, 3, 5, 6, 8, 3, 4, 4, 6, 3, 5, 2, 2, 3, 6, 6, 4, 5, 6, 5, 5, 8, 6, 4, 7, 5, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 1. Moreover, any integer n > 7 can be written as x + y with 0 < x < y such that 2^x + y is prime.
(ii) Every n = 2, 3, ... can be written as x + y (x, y > 0) with 2^x + y*(y+1)/2 prime.
(iii) Each integer n > 1 can be written as x + y (x, y > 0) with 2^x + y^2 - 1 prime. Also, any integer n > 1 not equal to 16 can be written as x + y (x, y > 0) with 2^x + y^4 - 1 prime.
We have verified part (i) of the conjecture for n up to 1.6*10^6. For example, 421801 = 149536 + 272265 with 2^149536 + 272265 prime.
We have extended our verification of part (i) of the conjecture for n up to 2*10^6. For example, 1657977 = 205494 + 1452483 with 2^205494 + 1452483 prime. - Zhi-Wei Sun, Aug 30 2015
The verification of part (i) of the conjecture has been made for n up to 7.29*10^6. For example, we find that 5120132 = 250851 + 4869281 with 2^250851 + 4869281 a prime of 75514 decimal digits. - Zhi-Wei Sun, Nov 16 2015
We have finished the verification of part (i) of the conjecture for n up to 10^7. For example, we find that 9302003 = 311468 + 8990535 with 2^311468 + 8990535 a prime of 93762 decimal digits. - Zhi-Wei Sun, Jul 28 2016
In a paper published in 2017, the author announced a USD $1000 prize for the first solution to his conjecture that a(n) > 0 for all n > 1. - Zhi-Wei Sun, Dec 03 2017
LINKS
Zhi-Wei Sun, Write n = k + m with 2^k + m prime, a message to Number Theory List, Nov. 16, 2013.
Z.-W. Sun, On a^n+ bn modulo m, arXiv:1312.1166 [math.NT], 2013-2014.
Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014-2015.
Z.-W. Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II: CANT, New York, NY, USA, 2015 and 2016, Springer Proc. in Math. & Stat., Vol. 220, Springer, New York, 2017, pp. 279-310. (See also arXiv:1211.1588 [math.NT].)
EXAMPLE
a(8) = 1 since 8 = 3 + 5 with 2^3 + 5 = 13 prime.
a(53) = 1 since 53 = 20 + 33 with 2^{20} + 33 = 1048609 prime.
a(64) = 1 since 64 = 13 + 51 with 2^{13} + 51 = 8243 prime.
MATHEMATICA
a[n_]:=Sum[If[PrimeQ[2^x+n-x], 1, 0], {x, 1, n-1}]
Table[a[n], {n, 1, 100}]
CROSSREFS
Sequence in context: A351902 A230351 A102481 * A348841 A295515 A348890
KEYWORD
nonn,look
AUTHOR
Zhi-Wei Sun, Nov 10 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 12:26 EDT 2024. Contains 372600 sequences. (Running on oeis4.)