The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A231015 Least k such that n = +- 1^2 +- 2^2 +- 3^2 +- 4^2 +- ... +- k^2 for some choice of +- signs. 6
7, 1, 4, 2, 3, 2, 3, 6, 7, 6, 4, 6, 3, 5, 3, 5, 7, 6, 7, 6, 4, 5, 4, 5, 7, 9, 7, 5, 4, 5, 4, 6, 7, 6, 7, 5, 7, 5, 7, 6, 7, 6, 7, 9, 8, 5, 8, 5, 7, 6, 7, 6, 11, 5, 8, 5, 7, 6, 7, 6, 7, 10, 7, 6, 7, 6, 7, 9, 7, 10, 7, 6, 7, 6, 8, 9, 8, 9, 8, 9, 7, 6, 7, 6, 11, 9 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Erdős and Surányi proved that for each n there are infinitely many k satisfying the equation.
A158092(k) is the number of solutions to 0 = +-1^2 +- 2^2 +- ... +- k^2. The first nonzero value is A158092(7) = 2, so a(0) = 7.
a(n) is also defined for n < 0, and clearly a(-n) = a(n).
See A158092 and the Andrica-Ionascu links for more comments.
The integral formula (3.6) in Andrica-Vacaretu (see Theorem 3 of the INTEGERS 2013 slides which has a typo) gives in this case the number of representations of n as +- 1^2 +- 2^2 +- ... +- k^2 for some choice of +- signs. This integral formula is (2^n/2*Pi)*Integral_{t=0..2*Pi} cos(n*t) * Product_{j=1..k} cos(j^2*t) dt. Clearly the number of such representations of n is the coefficient of z^n in the expansion (z^(1^2) + z^(-1^2))*(z^(2^2) + z^(-2^2))*...*(z^(k^2) + z^(-k^2)). Andrica-Vacaretu used this generating function to prove the integral formula. Section 4 of Andrica-Vacaretu gives a table of the number of such representations of n for k=1,...,9. - Dorin Andrica, Nov 12 2013
LINKS
D. Andrica and E. J. Ionascu, Variations on a result of Erdős and Surányi, Integers Conference 2013 Abstract.
D. Andrica and E. J. Ionascu, Variations on a result of Erdős and Surányi, INTEGERS 2013 slides.
D. Andrica and D. Vacaretu, Representation theorems and almost unimodal sequences, Studia Univ. Babes-Bolyai, Mathematica, Vol. LI, 4 (2006), 23-33.
P. Erdős and J. Surányi, Egy additív számelméleti probléma (in Hungarian; Russian and German summaries), Mat. Lapok 10 (1959), pp. 284-290.
FORMULA
a(n(n+1)(2n+1)/6) = a(A000330(n)) = n for n > 0.
a((n(n+1)(2n+1)/6)-2) = a(A000330(n)-2) = n for n > 0.
EXAMPLE
0 = 1^2 + 2^2 - 3^2 + 4^2 - 5^2 - 6^2 + 7^2.
1 = 1^2.
2 = - 1^2 - 2^2 - 3^2 + 4^2.
3 = - 1^2 + 2^2.
4 = - 1^2 - 2^2 + 3^2.
MAPLE
b:= proc(n, i) option remember; local m; m:=i*(i+1)*(2*i+1)/6;
n<=m and (n=m or b(n+i^2, i-1) or b(abs(n-i^2), i-1))
end:
a:= proc(n) local k; for k while not b(n, k) do od; k end:
seq(a(n), n=0..100); # Alois P. Heinz, Nov 03 2013
MATHEMATICA
b[n_, i_] := b[n, i] = Module[{m}, m = i*(i+1)*(2*i+1)/6; n <= m && (n == m || b[n+i^2, i-1] || b[Abs[n-i^2], i-1])]; a[n_] := Module[{k}, For[k = 1, !b[n, k] , k++]; k]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jan 28 2014, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A010504 A242132 A011450 * A183031 A021018 A010145
KEYWORD
nonn,look
AUTHOR
Jonathan Sondow, Nov 02 2013
EXTENSIONS
a(4) corrected and a(5)-a(85) from Donovan Johnson, Nov 03 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 06:57 EDT 2024. Contains 372538 sequences. (Running on oeis4.)