login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227158 Second-order term in the asymptotic expansion of B(x), the count of numbers up to x which are the sum of two squares. 8
5, 8, 1, 9, 4, 8, 6, 5, 9, 3, 1, 7, 2, 9, 0, 7, 9, 7, 9, 2, 8, 1, 4, 9, 8, 8, 4, 5, 0, 2, 3, 6, 7, 5, 5, 9, 3, 0, 4, 8, 3, 2, 8, 7, 3, 0, 7, 1, 7, 7, 2, 5, 2, 1, 8, 2, 3, 4, 2, 1, 2, 9, 9, 2, 6, 5, 2, 5, 1, 2, 3, 1, 5, 5, 5, 9, 5, 0, 3, 4, 6, 1, 4, 3, 0, 1, 2, 3, 6, 1, 3, 1, 4, 9, 2, 4, 1, 3, 4, 9, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
K = A064533, the Landau-Ramanujan constant, is the first-order term. This constant is c = lim_{x->oo} (B(x)*sqrt(log x)/(K*x) - 1)*log x. [Corrected by Alessandro Languasco, Sep 14 2022]
130000 digits are available, see link to web page. - Alessandro Languasco, Mar 27 2024
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constants, p. 99.
LINKS
Alexandru Ciolan, Alessandro Languasco and Pieter Moree, Landau and Ramanujan approximations for divisor sums and coefficients of cusp forms, section 10, 47500 digits are obtained, Journal of Mathematical Analysis and Applications, 2022; see also preprint on arXiv, arXiv:2109.03288 [math.NT], 2021.
Alessandro Languasco, Programs and numerical results, providing 130000 digits. [Note: information ancillary to above link.]
David Hare, Landau-Ramanujan Constant, second order obtained about 5000 digits, 1996.
Daniel Shanks, The second-order term in the asymptotic expansion of B(x), Mathematics of Computation 18 (1964), pp. 75-86.
Eric Weisstein's World of Mathematics, Landau-Ramanujan Constant.
EXAMPLE
0.58194865931729079777136487517474826173838317235153574360562...
MATHEMATICA
digits = 101; m0 = 5; dm = 5; beta[x_] := 1/4^x*(Zeta[x, 1/4] - Zeta[x, 3/4]); L = Pi^(3/2)/Gamma[3/4]^2*2^(1/2)/2; Clear[f]; f[m_] := f[m] = 1/2*(1 - Log[Pi*E^EulerGamma/(2*L)]) - 1/4*NSum[ Zeta'[2^k]/Zeta[2^k] - beta'[2^k]/beta[2^k] + Log[2]/(2^(2^k) - 1), {k, 1, m}, WorkingPrecision -> digits + 10] ; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits] != RealDigits[f[m - dm], 10, digits], m = m + dm]; RealDigits[f[m], 10, digits] // First (* Jean-François Alcover, May 27 2014 *)
PROG
(PARI) L(s)=sumalt(k=0, (-1)^k/(2*k+1)^s)
LL(s)=L'(s)/L(s)
ZZ(s)=zeta'(s)/zeta(s)
sm(x)=my(s); forprime(q=2, x, if(q%4==3, s+=log(q)/(q^8-1))); s+1/49/x^7+log(x)/7/x^7
1/2+log(2)/4-Euler/4-LL(1)/4-ZZ(2)/4+LL(2)/4-log(2)/12-ZZ(4)/4+LL(4)/4-log(2)/60+sm(1e5)/2
CROSSREFS
Sequence in context: A171709 A093157 A122998 * A098881 A185393 A073333
KEYWORD
nonn,cons,changed
AUTHOR
EXTENSIONS
Corrected and extended by Jean-François Alcover, Mar 19 2014 and again May 27 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 28 09:58 EDT 2024. Contains 372037 sequences. (Running on oeis4.)