The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A223550 Triangle T(n,k), read by rows, giving the denominator of the coefficient of x^k in the Boros-Moll polynomial P_n(x) for n >= 0 and 0 <= k <= n. 6
1, 2, 1, 8, 4, 2, 16, 4, 4, 2, 128, 32, 32, 16, 8, 256, 128, 64, 8, 16, 8, 1024, 512, 128, 32, 64, 32, 16, 2048, 256, 256, 128, 128, 32, 32, 16, 32768, 4096, 4096, 2048, 2048, 512, 512, 256, 128, 65536, 32768, 8192, 2048, 4096, 2048, 1024, 64, 256, 128 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
As Chen and Xia (2009) state, the Boros-Moll polynomial P_n(x) can be viewed as a Jacobi polynomial P_n^{a,b}(x) with a = n + (1/2) and b = -(n + (1/2)). For more information about the relation of this polynomial P_n(x) to the theory in Comtet (1967, pp. 81-83 and 85-86), see my comments for A223549. - Petros Hadjicostas, May 22 2020
LINKS
Vincenzo Librandi, Rows n = 0..50, flattened
Tewodros Amdeberhan and Victor H. Moll, A formula for a quartic integral: a survey of old proofs and some new ones, arXiv:0707.2118 [math.CA], 2007.
George Boros and Victor H. Moll, An integral hidden in Gradshteyn and Ryzhik, Journal of Computational and Applied Mathematics, 106(2) (1999), 361-368.
William Y. C. Chen and Ernest X. W. Xia, The Ratio Monotonicity of the Boros-Moll Polynomials, arXiv:0806.4333 [math.CO], 2009.
William Y. C. Chen and Ernest X. W. Xia, The Ratio Monotonicity of the Boros-Moll Polynomials, Mathematics of Computation, 78(268) (2009), 2269-2282.
Louis Comtet, Fonctions génératrices et calcul de certaines intégrales, Publikacije Elektrotechnickog faculteta - Serija Matematika i Fizika, No. 181/196 (1967), 77-87.
FORMULA
A223549(n,k)/T(n,k) = 2^(-2*n)*Sum_{j=k..n} 2^j*binomial(2*n - 2*j, n - j)*binomial(n + j, j)*binomial(j, k) = 2^(-2*n)*A067001(n,n-k) for n >= 0 and k = 0..n.
P_n(x) = Sum_{k=0..n} (A223549(n,k)/T(n,k))*x^k = ((2*n)!/4^n/(n!)^2)*2F1([-n, n + 1], [1/2 - n], (x + 1)/2).
From Petros Hadjicostas, May 22 2020: (Start)
Recurrence for the polynomial: 4*n*(n - 1)*(x - 1)*P_n(x) = 4*(2*n - 1)*(n - 1)*(x^2 - 2)*P_{n-1}(x) + (16*(n - 1)^2 - 1)*(x + 1)*P_{n-2}(x).
P_n(1) = Sum_{k=0..n} A223549(n,k)/T(n,k) = A334907(n)/(2^n*n!). (End)
EXAMPLE
P_3(x) = 77/16 + 43*x/4 + 35*x^2/4 + 5*x^3/2.
From Bruno Berselli, Mar 22 2013: (Start)
Triangle T(n,k) (with rows n >= 0 and columns k=0..n) begins as follows:
1;
2, 1;
8, 4, 2;
16, 4, 4, 2;
128, 32, 32, 16, 8;
256, 128, 64, 8, 16, 8;
1024, 512, 128, 32, 64, 32, 16;
2048, 256, 256, 128, 128, 32, 32, 16;
32768, 4096, 4096, 2048, 2048, 512, 512, 256, 128;
65536, 32768, 8192, 2048, 4096, 2048, 1024, 64, 256, 128;
... (End)
MATHEMATICA
t[n_, k_] := 2^(-2*n)*Sum[ 2^j*Binomial[2*n - 2*j, n-j]*Binomial[n+j, j]*Binomial[j, k], {j, k, n}]; Table[t[n, k] // Denominator, {n, 0, 9}, {k, 0, n}] // Flatten
PROG
(Magma) /* As triangle: */ [[Denominator(2^(-2*n)*&+[2^j*Binomial(2*n-2*j, n-j)*Binomial(n+j, j)*Binomial(j, k): j in [k..n]]): k in [0..n]]: n in [0..10]]; // Bruno Berselli, Mar 22 2013
CROSSREFS
Cf. A067001, A223549 (numerators), A334907.
Sequence in context: A089460 A308695 A278111 * A178102 A245836 A368386
KEYWORD
nonn,easy,frac,tabl
AUTHOR
EXTENSIONS
Name edited by Petros Hadjicostas, May 22 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 12:26 EDT 2024. Contains 372600 sequences. (Running on oeis4.)