The Hamming weight w(n) is the number of 1s in n when written in binary. Is there some effective bound on Fibonacci numbers F_n with $w(F_n) \leq x$ for a given x?

Since you specify "effective" in the question I guess you know this already, but just in case: there are only finitely many such n, because $2^{e_1} + \cdots + 2^{e_n} = (\varphi^n - \varphi^{-n})/\sqrt{5}$ is an S-unit equation in x + 2 variables over $O(\sqrt{5})$; but in general no effective proof is known for such a result (though the *number* of solutions of $w(F_n) \le x$ may be effectively bounded). – Noam D. Elkies Mar 2 '14 at 6:28

which happens iff $n \equiv 0 \mod 24$, and then $7 \mid 21 = F_8 \mid F_{24} \mid F_n$, which is impossible because $2^e + 2^f$ is never a multiple of 7. So we have only a few candidates for e. and we can deal with each of them separately, possibly even by elementary means, to show that (n, e, f) = (12, 4, 7) is the last solution. \langle EDIT \rangle Here's such an elementary proof. For each e (other than the trivial e=2), we choose some $f_0 > e$, try each f with $e < f_0 < f$, and then once $f \ge f_0$ we use the condition

The case x = 2 is still tractable. If $F_n = 2^e + 2^f$ with e < f then e < 5, else $F_n \equiv 0 \mod 2^5$,

 $F_n = 2^e + 2^f \equiv 2^e \mod 2^f$ to get a congruence condition on n, and then reach a contradiction by considering F_n modulo some odd prime (usually 3, but with one much larger exception). e=0: We take $f_0=4$. Trying f=1 and f=2 yields the Fibonacci numbers $F_4=3$ and

 $F_5 = 5$, and f = 3 yields the non-Fibonacci number 9. Once $f \ge 4$ we have $F_n \equiv 1 \mod 16$. But $F_n \mod 16$ is periodic with period 24, and it turns out that the remainder is 1 only for $n \equiv 1, 2, 23 \mod 24$. But $F_n \mod 3$ has period 8, which is a factor of 24; and

 $F_1 = F_2 = F_{-1} = 1$. We deduce $F_n \equiv 1 \mod 3$. Hence $2^f \equiv 0 \mod 3$, which is impossible. e=1: The Fibonacci numbers F_n congruent to 2 mod 4 are those with $n\equiv 3 \mod 6$, and these always turn out to be 2 mod 32. Thus $f \ge 5$, and f = 5 yields the Fibonacci number $34 = F_9$. We claim that this is the only possibility, using $f_0 = 6$. Once $f \ge 6$ we have $F_n \equiv 2 \mod 64$, and

then $n \equiv \pm 3 \mod 24$. But (again thanks to 8-periodicity mod 3) this implies $F_n \equiv 2 \mod 3$, so once more we reach a contradiction from the congruence $2^f \equiv 0 \mod 3$. e=2: impossible because F_n is never 2 mod 4.

e=3: We take $f_0=5$. Since $2^3+2^4=24$ is not a Fibonacci number, we may assume $f\geq 5$,

and then $F_n \equiv 8 \mod 32$. This is equivalent to $n \equiv 6 \mod 24$, which again yields a contradiction mod 3 since $2^f = F_n - 2^e$ would have to be a multiple of 3. e=4: This is the hardest case: because f=7 yields $144=F_{12}$, it is not enough to use

congruences that can be deduced from $F_n \equiv 2 \mod 2^7$, and we must take $f_0 > 7$. It turns out that $f_0 = 9$ works. Then f = 5, 6, 8 yield the non-Fibonacci 48, 80, 272. Once $f \ge 9$ we must have $F_n \equiv 16 \mod 2^9$. Now $F_n \mod 2^9$ has period 768, but the condition $F_n \equiv 16 \mod 2^9$

determines $n \mod 384$ (half of 768), and we compute $n \equiv -84 \mod 384$. Now $n \mod 384$ determines F_n modulo the prime 4481 (the period is 128), and we find $F_n \equiv 2284 \mod 4481$, whence $2^f = F_n - 2^e \equiv 2284 - 16 = 2268 \mod 4481$. But this is impossible because 2 is a fourth power (even an 8th power) mod 4481, and 2268 is not.

(/EDIT) But I doubt that one can prove that such a technique can work for all x...