The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A219534 G.f. satisfies A(x) = 1 + x*(A(x)^2 + A(x)^4). 12
1, 2, 12, 100, 968, 10208, 113792, 1318832, 15732064, 191878592, 2381917824, 29995598208, 382257383168, 4920505410816, 63882881030656, 835554927932160, 10999486798112256, 145626782310460416, 1937772463214168064, 25901381584638605312, 347618773649248088064 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
Let G(x) = (1 - sqrt(1-4*x-4*x^2))/(2*x), then g.f. A(x) satisfies:
(1) A(x) = sqrt( (1/x)*Series_Reversion(x/G(x)^2) ),
(2) A(x) = G(x*A(x)^2) and G(x) = A(x/G(x)^2),
where x*G(x) is the g.f. of A025227.
Recurrence: 3*n*(3*n-1)*(3*n+1)*(131*n^3 - 666*n^2 + 1075*n - 558)*a(n) = 2*(26200*n^6 - 172500*n^5 + 431572*n^4 - 521613*n^3 + 316327*n^2 - 89058*n + 8640)*a(n-1) - 12*(n-2)*(1441*n^5 - 8767*n^4 + 19186*n^3 - 18172*n^2 + 6930*n - 810)*a(n-2) + 8*(n-3)*(n-2)*(2*n-5)*(131*n^3 - 273*n^2 + 136*n - 18)*a(n-3). - Vaclav Kotesovec, Sep 10 2013
a(n) ~ c*d^n/n^(3/2), where d = 2/81*(7217783 + 10611 * sqrt(786))^(1/3) + 74654/(81*(7217783 + 10611 * sqrt(786))^(1/3)) + 400/81 = 14.48001092254652246... is the root of the equation -16 + 132*d - 400*d^2 + 27*d^3 = 0 and c = 1/2358*sqrt(262)*sqrt((213070976 + 3034746 * sqrt(786))^(1/3) * ((213070976 + 3034746 * sqrt(786))^(2/3) + 336670 + 1310*(213070976 + 3034746 * sqrt(786))^(1/3)))/((213070976 + 3034746 * sqrt(786))^(1/3)*sqrt(Pi)) = 0.1929450901182412149... - Vaclav Kotesovec, Sep 10 2013
a(n) = (1/n) * Sum_{k=0..floor(n-1)/2} 2^(n-k) * binomial(n,k) * binomial(3*n-k,n-1-2*k) for n > 0. - Seiichi Manyama, Apr 01 2024
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(2*n+2*k+1,n)/(2*n+2*k+1). - Seiichi Manyama, Apr 03 2024
EXAMPLE
G.f.: A(x) = 1 + 2*x + 12*x^2 + 100*x^3 + 968*x^4 + 10208*x^5 +...
Related expansions:
A(x)^2 = 1 + 4*x + 28*x^2 + 248*x^3 + 2480*x^4 + 26688*x^5 +...
A(x)^4 = 1 + 8*x + 72*x^2 + 720*x^3 + 7728*x^4 + 87104*x^5 +...
The g.f. satisfies A(x) = G(x*A(x)^2) and G(x) = A(x/G(x)^2) where
G(x) = 1 + 2*x + 4*x^2 + 12*x^3 + 40*x^4 + 144*x^5 + 544*x^6 +...+ A025227(n+1)*x^n +...
MATHEMATICA
nmax=20; aa=ConstantArray[0, nmax]; aa[[1]]=2; Do[AGF=1+Sum[aa[[n]]*x^n, {n, 1, j-1}]+koef*x^j; sol=Solve[Coefficient[1+x*(AGF^2+AGF^4)-AGF, x, j]==0, koef][[1]]; aa[[j]]=koef/.sol[[1]], {j, 2, nmax}]; Flatten[{1, aa}] (* Vaclav Kotesovec, Sep 10 2013 *)
PROG
(PARI) /* Formula A(x) = 1 + x*(A(x)^2 + A(x)^4): */
{a(n)=local(A=1); for(i=1, n, A=1+x*(A^2+A^4) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* Formula using Series Reversion: */
{a(n)=local(A=1, G=(1-sqrt(1-4*x-4*x^2+x^3*O(x^n)))/(2*x)); A=sqrt((1/x)*serreverse(x/G^2)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A064370 A138421 A224403 * A151392 A000888 A079821
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 21 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 14:34 EDT 2024. Contains 372540 sequences. (Running on oeis4.)