The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A219197 Self-convolution equals A199033. 3

%I #18 Oct 05 2020 05:24:14

%S 1,2,9,46,253,1452,8570,51594,315225,1948010,12147881,76316508,

%T 482392198,3064987460,19560379470,125309993974,805458510441,

%U 5192500350906,33561539356277,217429403317006,1411572472199649,9181398851046632,59821825063376124,390382132833183204

%N Self-convolution equals A199033.

%C Conjecture: a(n) is never congruent to 3 modulo 4.

%H G. C. Greubel, <a href="/A219197/b219197.txt">Table of n, a(n) for n = 0..1000</a>

%F Sum_{k=0..n} a(n-k)*a(k) = Sum_{k=0..n} C(n+k+1,n-k)*C(2*n-k+1,k) = A199033(n).

%F G.f.: A(x) = G(x) / sqrt(1 - 2*x*G(x)^2 - 3*x^2*G(x)^4), where G(x) = 1 + x*G(x)^3 = g.f. of A001764.

%F G.f.: A(x) = Sum_{n>=0} A002426(n) * x^n * G(x)^(2*n+1), where A002426 are the central trinomial coefficients and G(x) = 1 + x*G(x)^3 = g.f. of A001764.

%F a(n) = Sum_{k=0..n} A002426(k) * C(3*n-k+1,n-k) * (2*k+1)/(3*n-k+1) for n>0, where A002426 are the central trinomial coefficients.

%F From _Vaclav Kotesovec_, Oct 05 2020: (Start)

%F Recurrence: 32*(n-1)*n*(2*n + 1)*(49*n^2 - 210*n + 222)*a(n) = 4*(n-1)*(10388*n^4 - 55104*n^3 + 96925*n^2 - 64446*n + 15006)*a(n-1) - 6*(22050*n^5 - 173439*n^4 + 536588*n^3 - 814340*n^2 + 604331*n - 174702)*a(n-2) - 81*(n-2)*(3*n - 7)*(3*n - 5)*(49*n^2 - 112*n + 61)*a(n-3).

%F a(n) ~ 3^(3*n + 7/4) / (Gamma(1/4) * n^(3/4) * 2^(2*n + 5/2)). (End)

%e G.f.: A(x) = 1 + 2*x + 9*x^2 + 46*x^3 + 253*x^4 + 1452*x^5 +...

%e where A(x)^2 = 1 + 4*x + 22*x^2 + 128*x^3 + 771*x^4 + 4744*x^5 +...+ A199033(n)*x^n +...

%e Also, the g.f. A(x) satisfies: A(x) = G(x) * F(x*G(x)^2) where

%e F(x) = 1 + x + 3*x^2 + 7*x^3 + 19*x^4 + 51*x^5 + 141*x^6 +...+ A002426(n)*x^n +...

%e G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...+ A001764(n)*x^n +...

%t A002426[n_] := Sum[Binomial[n, 2*k]*Binomial[2*k, k], {k, 0, Floor[n/2]}]; Table[Sum[A002426[k]*Binomial[3*n - k + 1, n - k]*(2*k + 1)/(3*n - k + 1), {k, 0, n}], {n, 0, 50} ] (* _G. C. Greubel_, Mar 06 2017 *)

%o (PARI) {a(n)=local(A2=sum(m=0, n, sum(k=0, m, binomial(m+k+1, m-k)*binomial(2*m-k+1, k))*x^m+x*O(x^n))); polcoeff(A2^(1/2), n)}

%o for(n=0, 30, print1(a(n), ", "))

%o (PARI) {a(n)=local(G=1); for(i=0, n, G=1+x*G^3+O(x^(n+1))); polcoeff(G/sqrt(1-2*x*G^2-3*x^2*G^4), n)}

%o for(n=0, 30, print1(a(n), ", "))

%o (PARI) {A002426(n)=sum(k=0, n\2, binomial(n, 2*k)*binomial(2*k, k))}

%o {a(n)=if(n==0, 1, sum(k=0, n, A002426(k)*binomial(3*n-k+1, n-k)*(2*k+1)/(3*n-k+1)))}

%o for(n=0, 30, print1(a(n), ", "))

%o (PARI) {A097893(n)=sum(m=0, n, sum(k=0, m\2, binomial(m, 2*k)*binomial(2*k, k)))}

%o {a(n)=if(n==0, 1, sum(k=0, n, A097893(k)*binomial(3*n-k, n-k)*2*k/(3*n-k)))}

%o for(n=0, 30, print1(a(n), ", "))

%Y Cf. A199033, A183161, A002426.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Nov 14 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 03:31 EDT 2024. Contains 372528 sequences. (Running on oeis4.)