The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A212854 Number of n X 7 arrays with rows being permutations of 0..6 and no column j greater than column j-1 in all rows. 13

%I #60 Apr 01 2024 06:27:53

%S 1,3081513,53090086057,429966316953825,2675558106868421881,

%T 14895038886845467640193,78785944892341703819175577,

%U 406643086764765052892275303425,2073826171428339544452057104498041

%N Number of n X 7 arrays with rows being permutations of 0..6 and no column j greater than column j-1 in all rows.

%C From _Petros Hadjicostas_, Aug 25 2019: (Start)

%C We have a(m) = R(m,n=7,t=0) = A212855(m,7) for m >= 1, where R(m,n,t) = LHS of Eq. (6) of Abramson and Promislow (1978, p. 248).

%C Let P_7 be the set of all lists b = (b_1, b_2,..., b_7) of integers b_i >= 0, i = 1, ..., 7 such that 1*b_1 + 2*b_2 + ... + 7*b_7 = 7; i.e., P_7 is the set all integer partitions of 7. Then |P_7| = A000041(7) = 15.

%C We have a(m) = A212855(m,7) = Sum_{b in P_7} (-1)^(7 - Sum_{j=1..7} b_j) * (b_1 + b_2 + ... + b_7)!/(b_1! * b_2! * ... * b_7!) * (7! / ((1!)^b_1 * (2!)^b_2 * ... * (7!)^b_7))^m.

%C The integer partitions of 7 are listed on p. 831 of Abramowitz and Stegun (1964). We see that, when (b_1, b_2, ..., b_7) = (0, 2, 1, 0, 0, 0, 0) or (3, 0, 0, 1, 0, 0, 0) (i.e., we have the partitions 2+2+3 and 1+1+1+4), the corresponding multinomial coefficients are 210 = 7!/(2!2!3!) = 7!/(1!1!1!4!), so the number of terms in the expression for a(m) is |P_7| - 1 = 15 - 1 = 14 (see below in the Formula section).

%C Let M_7 := [1, 7, 21, 35, 42, 105, 140, 210, 420, 630, 840, 1260, 2520, 5040] be the A070289(7) = 15 - 1 = 14 distinct multinomial coefficients corresponding to the 15 integer partitions of 7 in P_7. The characteristic equation of the recurrence for a(m) is f(x) := Product_{r in M_7} (x-r) = Sum_{i = 0..14} (-1)^{14-i} * c_i * x^i. It turns out that c_{14} = 1, c_{13} = 11271, c_{12} = 46169368, c_{11} = 92088653622, and so on (see _R. H. Hardin_'s recurrence below), and c_0 = 2372695722072874920960000000000 = product of elements in M_7.

%C It follows that a(m) satisfies the recurrence Sum_{i = 0..14} (-1)^{14-i} * c_i * a(m-i) = 0, which is equivalent to _R. H. Hardin_'s empirical recurrence below.

%C If we count the multinomial coefficient 210 twice in the characteristic equation (since it corresponds to two different integer partitions of 7) then we get (x-210)*f(x) = Sum_{i = 0..15} (-1)^{15-i} * d_i * x^i, where (d_0, d_1, ..., d_15) is row k = 7 in irregular triangular array A309951. We have d_{15} = 1, d_{14} = 11481, ..., d_0 = 498266101635303733401600000000000 (see _Alois P. Heinz_'s b-file for A309951 with entries 37 to 52). Note that d_0 = 210 * c_0.

%C We then have Sum_{s = 0..15} (-1)^s * A309951(7, s) * a(m-s) = 0 for m >= 16. The latter recurrence is of order 15, and it is not minimal (as opposed to the one below by _R. H. Hardin_, which is of order 14 and minimal).

%C (End)

%H R. H. Hardin, <a href="/A212854/b212854.txt">Table of n, a(n) for n = 1..210</a>

%H Milton Abramowitz and Irene A. Stegun, <a href="http://www.cs.bham.ac.uk/~aps/research/projects/as/book.php">Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables</a>, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.

%H Morton Abramson and David Promislow, <a href="https://doi.org/10.1016/0097-3165(78)90012-2">Enumeration of arrays by column rises</a>, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6) (with t=0), p. 248, and the comments above.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>.

%F Empirical: a(n) = 11271*a(n-1) -46169368*a(n-2) +92088653622*a(n-3) -100896701243149*a(n-4) +64220064122517975*a(n-5) -24283767237355832850*a(n-6) +5479502670227877007500*a(n-7) -734487423806273666445000*a(n-8) +57519812656973505919500000*a(n-9) -2547756421856270328438000000*a(n-10) +60760702040873540340600000000*a(n-11) -700874827794270417254400000000*a(n-12) +3015300813467611878720000000000*a(n-13) -2372695722072874920960000000000*a(n-14). [It is correct; see the comments above and one of the formulas below.]

%F a(n) = 1 - 2*7^n - 2*21^n - 2*35^n + 3*42^n + 6*105^n + 3*140^n - 210^n - 12*420^n - 4*630^n + 5*840^n + 10*1260^n - 6*2520^n + 5040^n. - _Petros Hadjicostas_, Aug 25 2019

%F Sum_{s = 0..14} (-1)^s * A325305(7, s) * a(n-s) = 0 for n >= 15. (This is the same as _R. H. Hardin_'s recurrence above, and it follows from Eq. (6), p. 248, in Abramson and Promislow (1978) with t=0.) - _Petros Hadjicostas_, Sep 06 2019

%e Some solutions for n=3

%e ..0..3..4..1..5..2..6....0..3..4..1..5..2..6....0..3..4..1..5..2..6

%e ..1..0..3..5..2..6..4....1..0..3..2..4..5..6....1..0..4..2..5..6..3

%e ..5..2..1..0..6..3..4....4..6..5..1..0..3..2....2..4..0..6..3..5..1

%t T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];

%t a[n_] := T[n, 7];

%t Table[a[n], {n, 1, 12}] (* _Jean-François Alcover_, Apr 01 2024, after _Alois P. Heinz_ in A212855 *)

%Y Column 7 of A212855.

%Y Cf. A000041, A070289, A212850, A212851, A212852, A212853, A212856, A309951, A325305.

%K nonn

%O 1,2

%A _R. H. Hardin_, May 28 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 06:15 EDT 2024. Contains 372579 sequences. (Running on oeis4.)