The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206624 G.f.: Product_{n>0} ( (1+x^n)/(1-x^n) )^(n^4). 9

%I #26 Apr 30 2017 07:40:55

%S 1,2,34,228,1414,8872,52876,301136,1662614,8929406,46738920,239036116,

%T 1197187780,5882369976,28397283056,134864166352,630819797174,

%U 2908948327780,13236421303742,59477002686404,264104800719672,1159649708139680,5037895127964316

%N G.f.: Product_{n>0} ( (1+x^n)/(1-x^n) )^(n^4).

%C Convolution of A023873 and A248883. - _Vaclav Kotesovec_, Aug 19 2015

%C In general, for m >= 0, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^(k^m), then a(n) ~ ((2^(m+2)-1) * Gamma(m+2) * Zeta(m+2) / (2^(2*m+3) * n))^((1-2*Zeta(-m))/(2*m+4)) * exp((m+2)/(m+1) * ((2^(m+2)-1) * n^(m+1) * Gamma(m+2) * Zeta(m+2) / 2^(m+1))^(1/(m+2)) + Zeta'(-m)) / sqrt((m+2)*Pi*n). - _Vaclav Kotesovec_, Aug 19 2015

%C If m is even and m >= 2, then can be simplified as: a(n) ~ ((2^(m+2)-1) * Gamma(m+2) * Zeta(m+2) / (2^(2*m+3) * n))^(1/(2*m+4)) * exp((m+2)/(m+1) * ((2^(m+2)-1) * n^(m+1) * Gamma(m+2) * Zeta(m+2) / 2^(m+1))^(1/(m+2)) + (-1)^(m/2) * Gamma(m+1) * Zeta(m+1) / (2^(m+1) * Pi^m)) / sqrt((m+2)*Pi*n). - _Vaclav Kotesovec_, Aug 19 2015

%H Seiichi Manyama, <a href="/A206624/b206624.txt">Table of n, a(n) for n = 0..2916</a> (terms 0..1000 from Vaclav Kotesovec)

%H Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 23.

%F G.f.: exp( Sum_{n>=1} (sigma_5(2*n) - sigma_5(n))/16 * x^n/n ), where sigma_5(n) is the sum of 5th powers of divisors of n (A001160).

%F Inverse Euler transform has g.f.: x*(2 + 31*x + 152*x^2 + 341*x^3 + 460*x^4 + 341*x^5 + 152*x^6 + 31*x^7 + 2*x^8)/(1-x^2)^5.

%F a(n) ~ exp(3*2^(2/3)*Pi*n^(5/6)/5 + 3*Zeta(5)/(4*Pi^4)) / (2^(7/6) * 3^(1/2) * n^(7/12)), where Zeta(5) = A013663. - _Vaclav Kotesovec_, Aug 19 2015

%F a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A096960(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Apr 30 2017

%e G.f.: A(x) = 1 + 2*x + 18*x^2 + 88*x^3 + 398*x^4 + 1768*x^5 + 7508*x^6 +...

%e where A(x) = (1+x)/(1-x) * (1+x^2)^16/(1-x^2)^16 * (1+x^3)^81/(1-x^3)^81 *...

%e Also, A(x) = Euler transform of [2,31,162,496,1250,2511,4802,7936,...]:

%e A(x) = 1/((1-x)^2*(1-x^2)^31*(1-x^3)^162*(1-x^4)^496*(1-x^5)^1250*(1-x^6)^2511*...).

%t nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k^4), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 19 2015 *)

%o (PARI) {a(n)=polcoeff(prod(m=1,n+1,((1+x^m)/(1-x^m+x*O(x^n)))^(m^4)),n)}

%o (PARI) {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m, 5)-sigma(m, 5))/16*x^m/m)+x*O(x^n)), n)}

%o (PARI) {a(n)=local(InvEulerGF=x*(2+31*x+152*x^2+341*x^3+460*x^4+341*x^5+152*x^6+31*x^7+2*x^8)/(1-x^2+x*O(x^n))^5); polcoeff(1/prod(k=1,n,(1-x^k+x*O(x^n))^polcoeff(InvEulerGF,k)),n)}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A015128 (m=0), A156616 (m=1), A206622 (m=2), A206623 (m=3), A001160 (sigma_5).

%K nonn

%O 0,2

%A _Paul D. Hanna_, Feb 12 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 6 12:43 EDT 2024. Contains 373128 sequences. (Running on oeis4.)