The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196838 Numerators of coefficients of Bernoulli polynomials with rising powers of the variable. 24

%I #57 Jun 16 2023 17:53:11

%S 1,-1,1,1,-1,1,0,1,-3,1,-1,0,1,-2,1,0,-1,0,5,-5,1,1,0,-1,0,5,-3,1,0,1,

%T 0,-7,0,7,-7,1,-1,0,2,0,-7,0,14,-4,1,0,-3,0,2,0,-21,0,6,-9,1,5,0,-3,0,

%U 5,0,-7,0,15,-5,1,0,5,0,-11,0,11,0,-11,0,55,-11,1

%N Numerators of coefficients of Bernoulli polynomials with rising powers of the variable.

%C The denominator triangle is found under A196839.

%C This is the row reversed triangle A053382.

%C From _Wolfdieter Lang_, Oct 25 2011: (Start)

%C This is the Sheffer triangle (z/(exp(z)-1),z), meaning that the column e.g.f.'s are as given below in the formula section. In Roman's book `The Umbral Calculus`, Ch. 2, 5., p. 26ff this is called Appell for (exp(t)-1)/t (see A048854 for the reference).

%C The e.g.f. for the a- and z-sequence for this Sheffer triangle is 1 and (x-exp(x)+1)/x^2, respectively. See the link under A006232 for the definition. The z-sequence is z(n) = -1/(2*A000217(n+1)). This leads to the recurrence relations given below.

%C The e.g.f. for the row sums is x/(1-exp(-x)), leading to the rational sequence A164555(n)/A027664(n). The e.g.f. of the alternating row sums is

%C x/(exp(x)*(exp(x)-1)), leading to the rational sequence

%C (-1)^n*A164558(n)/A027664(n).

%C (End)

%D R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1991 (Seventh printing).Second ed. 1994.

%H Naho Kawasaki and Yasuo Ohno, <a href="http://math.colgate.edu/~integers/x39/x39.pdf">The triangle algorithm for Bernoulli polynomials</a>, Integers, vol. 23 (2023). (See figure 4.)

%H Wolfdieter Lang, <a href="https://arxiv.org/abs/1707.04451">On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers</a>, arXiv:1707.04451 [math.NT], 2017.

%H D. H. Lehmer, <a href="http://www.jstor.org/stable/2322383">A new approach to Bernoulli polynomials</a>, The American mathematical monthly 95.10 (1988): 905-911.

%F T(n,m) = numerator([x^m]Bernoulli(n,x)), n>=0, m=0..n.

%F E.g.f. of Bernoulli(n,x): z*exp(x*z)/(exp(z)-1).

%F See the Graham et al. reference, eq. (7.80), p. 354.

%F From _Wolfdieter Lang_, Oct 25 2011: (Start)

%F The e.g.f. for column no. m>=0 of the rational triangle B(n,m):=a(n,m)/A096839(n,m) is x^(m+1)/(m!*(exp(x)-1)).

%F (see the Sheffer-Appell comment above).

%F The Sheffer a-sequence, given as comment above, leads to the recurrence r(n,m)=(n/m)*r(n-1,m-1), n>=1, m>=1. E.g., -1/6 = B(5,1) = (5/1)*B(4,0)= -5/30 = -1/6.

%F The Sheffer z-sequence, given as comment above, leads to the recurrence

%F B(n,0) = n*sum(z(j)*B(n-1,j),j=0..n-1), n>=1. B(0,0)=1.

%F E.g., -1/30 = B(4,0) = 4*((-1/2)*0 + (-1/6)*(1/2) + (-1/12)*(-3/2) + (-1/20)*1) = -1/30.

%F (End)

%F T(n,m) = numerator(binomial(n,m)*Bernoulli(n-m)). - _Fabián Pereyra_, Mar 04 2020

%e The triangle starts with

%e n\m 0 1 2 3 4 5 6 7 8 ...

%e 0: 1

%e 1: -1 1

%e 2: 1 -1 1

%e 3: 0 1 -3 1

%e 4: -1 0 1 -2 1

%e 5: 0 -1 0 5 -5 1

%e 6: 1 0 -1 0 5 -3 1

%e 7: 0 1 0 -7 0 7 -7 1

%e 8: -1 0 2 0 -7 0 14 -4 1

%e ...

%e The rational triangle a(n,m)/A196839(n,m) starts with:

%e n\m 0 1 2 3 4 5 6 7 8 ...

%e 0: 1

%e 1: -1/2 1

%e 2: 1/6 -1 1

%e 3: 0 1/2 -3/2 1

%e 4: -1/30 0 1 -2 1

%e 5: 0 -1/6 0 5/3 -5/2 1

%e 6: 1/42 0 -1/2 0 5/2 -3 1

%e 7: 0 1/6 0 -7/6 0 7/2 -7/2 1

%e 8: -1/30 0 2/3 0 -7/3 0 14/3 -4 1

%e ...

%e E.g., Bernoulli(2,x) = (1/6)*x^0 - 1*x^1 + 1*x^2.

%p # Without using Maple's Bernoulli polynomials (Kawasaki and Ohno call it

%p # the 'triangle algorithm for B(n, x)'):

%p b := proc(n, m, x) option remember; if n = 0 then 1/(m + 1) else

%p normal((m + 1)*b(n-1, m + 1, x) - (m + 1 - x)*b(n-1, m, x)) fi end:

%p Bcoeffs := n -> local k; [seq(coeff(b(n, 0, x), x, k), k = 0..n)]:

%p for n from 0 to 8 do numer(Bcoeffs(n)) od; # _Peter Luschny_, Jun 16 2023

%t row[n_] := CoefficientList[BernoulliB[n, x], x] // Numerator;

%t Table[row[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Jun 15 2018 *)

%o (PARI) row(n) = apply(x->numerator(x), Vecrev(bernpol(n)));

%o tabl(nn) = for (n=0, nn, print(row(n))); \\ _Michel Marcus_, Jun 15 2018

%Y Three versions of coefficients of Bernoulli polynomials: A053382/A053383; for reflected version see A196838/A196839; see also A048998 and A048999.

%K sign,easy,tabl,frac

%O 0,9

%A _Wolfdieter Lang_, Oct 23 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 17:02 EDT 2024. Contains 372548 sequences. (Running on oeis4.)