The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196837 Coefficient table of numerator polynomials of o.g.f.s for partial sums of powers of positive integers. 13
1, 2, -3, 3, -12, 11, 4, -30, 70, -50, 5, -60, 255, -450, 274, 6, -105, 700, -2205, 3248, -1764, 7, -168, 1610, -7840, 20307, -26264, 13068, 8, -252, 3276, -22680, 89796, -201852, 236248, -109584, 9, -360, 6090, -56700, 316365, -1077300, 2171040, -2345400, 1026576, 10, -495, 10560, -127050, 946638, -4510275, 13667720, -25228500, 25507152, -10628640 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The k-th power of the positive integers has partial sums Sum_{j=1..n} j^k given as column number n >= 1, in the array A103438 (not in the triangle; see the example array given there; note that 0^0 has been set to 0 there).
The o.g.f. of column number n >= 1 of the array A103438 is obtained via Laplace transformation from the e.g.f. which is given there as
exp(x)*(exp(n*x)-1)/(exp(x)-1) = Sum_{j=1..n} exp(j*x)
(it is trivial that the sum is the e.g.f.).
The o.g.f. is, therefore, Sum_{j=1..n} 1/(1-j*x), which is rewritten as P(n,x)/Product_{j=1..n} (1-j*x). This defines the row polynomials P(n,x) of the present triangle. See the link for details.
This e.g.f. - o.g.f. connection proves some conjectures by Simon Plouffe. See the o.g.f. Maple programs under, e.g., A001551(n=4) and A001552 (n=5).
This triangle organizes the sum of powers of the first n positive integers in terms of the column no. n of the Stirling2 numbers A048993 (see the formula and example given below, as well as the link).
From Wolfdieter Lang, Oct 12 2011: (Start)
With the formulas given below one finds for n >= 1, k >= 0, Sum_{j=1..n} j^k =
Sum_{m=0..min(k,n-1)} ((n-m)*S1(n+1, n-m+1)*S2(k+n-m, n)),
with the Stirling numbers S1 from A048994 and S2 from A048993 (this formula I did not (yet) find in the literature). See the link for the proof.
For two other formulas expressing these sums of k-th powers of the first n positive integers in terms of the row no. k of Stirling2 numbers and binomials in n see the D. E. Knuth reference given under A093556, p. 285.
See also the given link below, eqs. (11) and (12). (End)
LINKS
José L. Cereceda, A refinement of Lang's formula for the sum of powers of integers, arXiv:2301.02141 [math.NT], 2023.
Wolfdieter Lang, Proofs and first 15 row polynomials, 2011.
FORMULA
a(n,m) = [x^m] P(n,x), m=0..n-1, with the row polynomials defined by
(Sum_{j=1..n} 1/(1-j*x))*Product_{j=1..n} (1-j*x) (see the comment given above).
Sum_{j=1..n} j^k = Sum_{m=0..n-1} a(n,m)*S2(k+n-m,n), n >= 1, k >= 0, with the Stirling2 triangle A048993.
From Wolfdieter Lang, Oct 12 2011: (Start)
The row polynomial P(n,x) is therefore
Sum_{j=1..n} (Product_{k=1..n omitting k=j} (1-k*x)), n >= 1. This leads to:
a(n,m) = (n-m)*S1(n+1, n+1-m), n-1 >= m >= 0, with the (signed) Stirling1 numbers A048994. For the proof see the link.
(End)
A similar polynomial occurs in the expansion of 1/(n+x)^2 as a series with factorials in the denominator: 1/(n+x)^2 = -Sum_{k>=1} n!/(n+k+1)! * P(k,1/x) x^(k-1). - Matt Majic, Nov 01 2019
EXAMPLE
n\m 0 1 2 3 4 5...
1 1
2 2 -3
3 3 -12 11
4 4 -30 70 -50
5 5 -60 255 -450 274
6 6 -105 700 -2205 3248 -1764
...
n=4 (A001551=2*A196836): the row polynomial factorizes into 2*(2-5*x)*(1-5*x+5*x^2).
n=5: 1^k + 2^k + 3^k + 4^k + 5^k, k>=0, (A001552) has as e.g.f. Sum_{j=1..5} exp(j*x). The o.g.f. is
Sum_{j=1..5} 1/(1-j*x), and this is
(5 - 60*x + 255*x^2 - 450*x^3 + 274*x^4)/Product_{j=1..5} (1-j*x).
n=6 (A001553): the row polynomial factorizes into
(2 - 7*x)*(3 - 42*x + 203*x^2 - 392*x^3 + 252*x^4).
Sums of powers of the first n positive integers in terms of S2:
n=4: A001551(k) = 4*S2(k+4,4) - 30*S2(k+3,4) + 70*S2(k+2,4) - 50*S2(k+1,4), k >= 0. E.g., k=3: 4*350 - 30*65 + 70*10 - 50*1 = 100 = A001551(3).
From Wolfdieter Lang, Oct 12 2011: (Start)
Row polynomial for n=3: P(3,x) = (1-2*x)*(1-3*x) + (1-1*x)*(1-3*x) + (1-1*x)*(1-2*x) = 3 - 12*x + 11*x^2.
a(3,2) = +(sigma_2(2,3) + sigma_2(1,3) + sigma_2(1,2)) =
2*3 + 1*3 + 1*2 = 11 = +1*sigma_2(1,2,3) = +1*|S1(4,4-2)|.
S1,S2 formula for sums of powers with n=4, k=3:
A001551(3) = Sum_{j=1..n} j^3 = 1*4*350 - 3*10*65 + 2*35*10 - 1*50*1 = 100. (End)
MATHEMATICA
a[n_, m_] := (n-m)*StirlingS1[n+1, n+1-m]; Flatten[ Table[ a[n, m], {n, 1, 10}, {m, 0, n-1}] ] (* Jean-François Alcover, Dec 02 2011, after Wolfdieter Lang *)
CROSSREFS
Cf. A103438, A093556/A093557 (for sums of powers).
Sequence in context: A287428 A232933 A303700 * A275212 A370554 A127003
KEYWORD
sign,easy,tabl
AUTHOR
Wolfdieter Lang, Oct 10 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 06:37 EDT 2024. Contains 372538 sequences. (Running on oeis4.)