The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196526 a(n) is the number of ways the n-th prime number prime(n) can be written as sum of coprime b and c, in which b is a positive even number and c is an odd number that is -1 or greater, and all odd prime factors of b and c are less than or equal to sqrt(prime(n)). 4

%I #29 Mar 12 2022 14:08:11

%S 2,1,1,3,2,3,2,1,5,5,4,4,3,4,8,8,7,7,7,7,8,7,8,7,6,6,7,7,7,12,13,12,

%T 11,12,10,10,11,11,16,18,18,18,17,18,18,17,16,15,16,17,15,18,18,18,18,

%U 17,16,18,17,16,24,24,23,23,23,23,24,23,24,24,25,32,33,34,33,36,34,35,33,35,33,32,35,34,33,33,34,33,35,34,31,32,30,35,35,34,32,32,45

%N a(n) is the number of ways the n-th prime number prime(n) can be written as sum of coprime b and c, in which b is a positive even number and c is an odd number that is -1 or greater, and all odd prime factors of b and c are less than or equal to sqrt(prime(n)).

%C All terms are positive integers, no zero term.

%C The Mathematica program generates first 99 items and the function AllSplits[n_] can be used to generate a(n) for any n > 1.

%H Reinhard Zumkeller, <a href="/A196526/b196526.txt">Table of n, a(n) for n = 2..1000</a>

%e n=2: prime(2)=3 = 2 + 1 = 2^2 - 1, so a(2)=2;

%e n=3: prime(3)=5 = 2^2 + 1, so a(3)=1;

%e ...

%e n=10: prime(10)=29, int(sqrt(29))=5, 29 = 2+3^3 = 2^2+5^2 = 2^2*5+3^2 = 2^3*3+5 = 2*3*5-1, so a(10)=5.

%t AllPrimes[k_] :=

%t Module[{p, maxfactor, pset}, p = Prime[k];

%t maxfactor = NextPrime[IntegerPart[Sqrt[p]] + 1, -1];

%t If[maxfactor == -2, pset = {2}, p0 = 2; pset = {2};

%t While[p0 = NextPrime[p0]; p0 <= maxfactor,

%t pset = Union[pset, {p0}]]]; pset];

%t NextIntegerWithFactor[seed_, fset_] :=

%t Module[{m, a, l, i, fset1}, m = seed - 1;

%t While[m++; If[Mod[m, 2] == 1, m++]; a = FactorInteger[m];

%t l = Length[a]; fset1 = {};

%t Do[fset1 = Union[fset1, {a[[i]][[1]]}], {i, 1, l}];

%t Intersection[fset1, fset] != fset1]; m];

%t FactorSet[seed_] :=

%t Module[{fset2, a, l, i}, a = FactorInteger[seed]; l = Length[a];

%t fset2 = {}; Do[fset2 = Union[fset2, {a[[i]][[1]]}], {i, 1, l}];

%t fset2]; SplitPrime[n_, q0_] :=

%t Module[{p, pset, q, r, rp, fs, rs, qs}, p = Prime[n];

%t pset = AllPrimes[n]; q = q0;

%t While[q++; q = NextIntegerWithFactor[q, pset]; r = p - q;

%t rp = Abs[r]; fs = FactorSet[rp];

%t rs = Complement[pset, FactorSet[q]];

%t qs = Intersection[fs,

%t rs]; (fs != {1}) && (fs != qs) && (q <= (p + 1))]; {p, q, r} ];

%t AllSplits[n_] :=

%t Module[{q, ss, spls}, q = 0; spls = {};

%t While[ss = SplitPrime[n, q]; q = ss[[2]];

%t If[q <= (Prime[n] + 1), spls = Union[spls, {ss}]];

%t q < (Prime[n] + 1)]; spls]; Table[

%t Length[AllSplits[i]], {i, 2, 100}] (* _Lei Zhou_ *)

%t zhouAbleCount[n_] := Length[Select[Range[-1, Prime[n], 2], GCD[#, Prime[n] - #] == 1 && FactorInteger[#][[-1, 1]] <= Sqrt[Prime[n]] && (IntegerQ[Log[2, Prime[n] - #]] || FactorInteger[Prime[n] - #][[-1, 1]] <= Sqrt[Prime[n]]) &]]; Table[zhouAbleCount[n], {n, 2, 100}] (* _Alonso del Arte_, Oct 03 2011 *)

%o (Haskell)

%o a196526 n = length [c | let p = a000040 n,

%o c <- [-1,1..p-1], let b = p - c,

%o gcd b c == 1,

%o a006530 b ^ 2 < p || p == 3, a006530 c ^ 2 < p]

%o -- _Reinhard Zumkeller_, Oct 04 2001

%Y Cf. A006530 (largest prime factor), A000040.

%K nonn,easy

%O 2,1

%A _Lei Zhou_, Oct 03 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 10:23 EDT 2024. Contains 372532 sequences. (Running on oeis4.)