The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A194005 Triangle of the coefficients of an (n+1)-th order differential equation associated with A103631. 9

%I #48 Feb 07 2019 19:31:52

%S 1,1,1,1,2,1,1,3,2,1,1,4,3,3,1,1,5,4,6,3,1,1,6,5,10,6,4,1,1,7,6,15,10,

%T 10,4,1,1,8,7,21,15,20,10,5,1,1,9,8,28,21,35,20,15,5,1,1,10,9,36,28,

%U 56,35,35,15,6,1,1,11,10,45,36,84,56,70,35,21,6,1

%N Triangle of the coefficients of an (n+1)-th order differential equation associated with A103631.

%C This triangle is a companion to Parks' triangle A103631.

%C The coefficients of triangle A103631(n,k) appear in appendix 2 of Park’s remarkable article “A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov” if we assume that the b(n) coefficients are all equal to 1, see the second Maple program.

%C The a(n,k) coefficients of the triangle given above are related to the coefficients of a linear (n+1)-th order differential equation for the case b(n)=1, see the examples.

%C a(n,k) is also the number of symmetric binary strings of odd length n with Hamming weight k>0 and no consecutive 1's. - _Christian Barrientos_ and _Sarah Minion_, Feb 27 2018

%H Reinhard Zumkeller, <a href="/A194005/b194005.txt">Rows n = 0..150 of triangle, flattened</a>

%H Henry W. Gould, <a href="http://www.fq.math.ca/3-4.html"> A Variant of Pascal's Triangle </a>, The Fibonacci Quarterly, Vol. 3, Nr. 4, Dec. 1965, p. 257-271.

%H P.C. Parks, <a href="https://doi.org/10.1017/S030500410004072X"> A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov </a>, Math. Proc. of the Cambridge Philosophical Society, Vol. 58, Issue 04 (1962) p. 694-702.

%H Chris Zheng, Jeffrey Zheng, <a href="https://doi.org/10.1007/978-981-13-2282-2_4">Triangular Numbers and Their Inherent Properties</a>, Variant Construction from Theoretical Foundation to Applications, Springer, Singapore, 51-65.

%H <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>

%F a(n,k) = binomial(floor((2*n+1-k)/2), n-k).

%F a(n,k) = sum(A103631(n1,k), n1=k..n), 0<=k<=n and n>=0.

%F a(n,k) = sum(binomial(floor((2*n1-k-1)/2), n1-k), n1=k..n).

%F T(n,0) = T(n,n) = 1, T(n,k) = T(n-2,k-2) + T(n-1,k), 0 < k < n. - _Reinhard Zumkeller_, Nov 23 2012

%e For the 5th-order linear differential equation the coefficients a(k) are: a(0) = 1, a(1) = a(4,0) = 1, a(2) = a(4,1) = 4, a(3) = a(4,2) = 3, a(4) = a(4,3) = 3 and a(5) = a(4,4) = 1.

%e The corresponding Hurwitz matrices A(k) are, see Parks: A(5) = Matrix([[a(1),a(0),0,0,0], [a(3),a(2),a(1),a(0),0], [a(5),a(4),a(3),a(2),a(1)], [0,0,a(5),a(4),a(3)], [0,0,0,0,a(5)]]), A(4) = Matrix([[a(1),a(0),0,0], [a(3),a(2),a(1),a(0)], [a(5),a(4),a(3),a(2)], [0,0,a(5),a(4)]]), A(3) = Matrix([[a(1),a(0),0], [a(3),a(2),a(1)], [a(5),a(4),a(3)]]), A(2) = Matrix([[a(1),a(0)], [a(3),a(2)]]) and A(1) = Matrix([[a(1)]]).

%e The values of b(k) are, see Parks: b(1) = d(1), b(2) = d(2)/d(1), b(3) = d(3)/(d(1)*d(2)), b(4) = d(1)*d(4)/(d(2)*d(3)) and b(5) = d(2)*d(5)/(d(3)*d(4)).

%e These a(k) values lead to d(k) = 1 and subsequently to b(k) = 1 and this confirms our initial assumption, see the comments.

%p A194005 := proc(n,k): binomial(floor((2*n+1-k)/2),n-k) end: for n from 0 to 11 do seq(A194005(n,k), k=0..n) od; seq(seq(A194005(n,k), k=0..n), n=0..11);

%p nmax:=11: for n from 0 to nmax+1 do b(n):=1 od: A103631 := proc(n,k) option remember: local j: if k=0 and n=0 then b(1) elif k=0 and n>=1 then 0 elif k=1 then b(n+1) elif k=2 then b(1)*b(n+1) elif k>=3 then expand(b(n+1)*add(procname(j,k-2), j=k-2..n-2)) fi: end: for n from 0 to nmax do for k from 0 to n do A194005(n,k):= add(A103631(n1,k), n1=k..n) od: od: seq(seq(A194005(n,k),k=0..n), n=0..nmax);

%t Flatten[Table[Binomial[Floor[(2n+1-k)/2],n-k],{n,0,20},{k,0,n}]] (* _Harvey P. Dale_, Apr 15 2012 *)

%o (Haskell)

%o a194005 n k = a194005_tabl !! n !! k

%o a194005_row n = a194005_tabl !! n

%o a194005_tabl = [1] : [1,1] : f [1] [1,1] where

%o f row' row = rs : f row rs where

%o rs = zipWith (+) ([0,1] ++ row') (row ++ [0])

%o -- _Reinhard Zumkeller_, Nov 22 2012

%Y Cf. A065941 and A103631.

%Y Triangle sums (see A180662): A000071 (row sums; alt row sums), A075427 (Kn22), A000079 (Kn3), A109222(n+1)-1 (Kn4), A000045 (Fi1), A034943 (Ca3), A001519 (Gi3), A000930 (Ze3)

%Y Interesting diagonals: T(n,n-4) = A189976(n+5) and T(n,n-5) = A189980(n+6)

%Y Cf. A052509.

%K nonn,easy,tabl

%O 0,5

%A _Johannes W. Meijer_ & A. Hirschberg (a.hirschberg(AT)tue.nl), Aug 11 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 08:12 EDT 2024. Contains 373102 sequences. (Running on oeis4.)