Proof of "empirical" recurrence for A189600

Robert Israel

January 28, 2019

Let P(n) be the set of permutations counted by a(n). For $n-8 \le k \le n-2$ or k=n. we define a one-to-one map $\Phi_{k,n}$ from P(k) into P(n) as follows: for $\pi \in P(k)$,

$$\Phi_{k,n}(\pi)_j = \pi_j \text{ for } j \le k$$
$$= n \text{ for } j = k+1$$
$$= j-1 \text{ otherwise}$$

It is straightforward to verify that $\Phi_{k,n}(\pi) \in P(n)$: its displacements are those of π for $j \leq k, k+1-n$ for n, and 1 for $k+1 \leq j < n$. The ranges $\Phi_{k,n}(P(k))$ for different k are disjoint since $\pi_{k,n}(k+1) = n$. To complete the proof of $a(n) = a(n-1) + a(n-3) + \ldots + a(n-8)$ for n > 8, it suffices to show that every member of P(n) is in $\Phi_{k,n}(P(k))$ for some k, $n-8 \leq k \leq n-2$ or k = n.

Consider a permutation $\pi \in P(n)$. The constraint on displacement says each $\pi(j)$ must be one of $j - 1, j, j + 2, \ldots, j + 7$. In particular, n can occur in any of positions n - 7 to n - 2 or n. If it occurs in position i, then I claim $\pi \in \Phi_{i-1,n}(P(i-1))$. First of all, $\pi(n)$ must be n-1 or n, but if $i \neq n$, the value n is not available so only $\pi(n) = n - 1$ is possible. Similarly, $\pi(n-1) \geq n-2$, but if i < n-1, the values n-1 and n are not available so $\pi(n-1) = n-2$. Continuing in this way, we get $\pi(j) = j - 1$ for $i+1 \leq j \leq n$. This leaves π to map $\{1, \ldots, i-1\}$ to itself, and since the constraint on displacements is the same, the restriction of π to $\{1, \ldots, i-1\}$ is in P(i-1), and π is the image of this permutation under $\Phi_{i-1,n}$. This completes the proof.