Proof of "empirical" recurrence for A189600

Robert Israel

January 28, 2019

Let $P(n)$ be the set of permutations counted by $a(n)$. For $n-8 \leq k \leq n-2$ or $k=n$. we define a one-to-one map $\Phi_{k, n}$ from $P(k)$ into $P(n)$ as follows: for $\pi \in P(k)$,

$$
\begin{aligned}
\Phi_{k, n}(\pi)_{j} & =\pi_{j} \text { for } j \leq k \\
& =n \text { for } j=k+1 \\
& =j-1 \text { otherwise }
\end{aligned}
$$

It is straightforward to verify that $\Phi_{k, n}(\pi) \in P(n)$: its displacements are those of π for $j \leq$ $k, k+1-n$ for n, and 1 for $k+1 \leq j<n$. The ranges $\Phi_{k, n}(P(k))$ for different k are disjoint since $\pi_{k, n}(k+1)=n$. To complete the proof of $a(n)=a(n-1)+a(n-3)+\ldots+a(n-8)$ for $n>8$, it suffices to show that every member of $P(n)$ is in $\Phi_{k, n}(P(k))$ for some k, $n-8 \leq k \leq n-2$ or $k=n$.

Consider a permutation $\pi \in P(n)$. The constraint on displacement says each $\pi(j)$ must be one of $j-1, j, j+2 \ldots, j+7$. In particular, n can occur in any of positions $n-7$ to $n-2$ or n. If it occurs in position i, then I claim $\pi \in \Phi_{i-1, n}(P(i-1))$. First of all, $\pi(n)$ must be $n-1$ or n, but if $i \neq n$, the value n is not available so only $\pi(n)=n-1$ is possible. Similarly, $\pi(n-1) \geq n-2$, but if $i<n-1$, the values $n-1$ and n are not available so $\pi(n-1)=n-2$. Continuing in this way, we get $\pi(j)=j-1$ for $i+1 \leq j \leq n$. This leaves π to map $\{1, \ldots, i-1\}$ to itself, and since the constraint on displacements is the same, the restriction of π to $\{1, \ldots, i-1\}$ is in $P(i-1)$, and π is the image of this permutation under $\Phi_{i-1, n}$. This completes the proof.

