The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A189007 Number of ON cells after n generations of the 2D cellular automaton described in the comments. 4
1, 4, 8, 16, 16, 32, 32, 64, 32, 64, 64, 128, 64, 128, 128, 256, 64, 128, 128, 256, 128, 256, 256, 512, 128, 256, 256, 512, 256, 512, 512, 1024, 128, 256, 256, 512, 256, 512, 512, 1024, 256, 512, 512, 1024, 512, 1024, 1024, 2048, 256, 512, 512, 1024, 512, 1024, 1024, 2048, 512, 1024, 1024, 2048, 1024, 2048, 2048, 4096, 256, 512, 512, 1024, 512 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The cells are the squares of the standard infinite square grid. All cells are initially OFF and a single cell is turned ON at generation 1. At subsequent generations a cell is ON if and only if exactly one East/West neighbor was ON or exactly one North/South neighbor was ON (or BOTH of those conditions) in the previous generation.
The equivalent Mathematica cellular automaton is obtained with neighborhood weights {{0,1,0},{3,0,3},{0,1,0}}}, rule number 186, and initial configuration {{1}}.
Also sequence generated by Rule 84 with neighborhood weights {{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}. - Robert Price, Mar 11 2016
Conjecture: a(1) = 1; a(n) = 2^A056791(n-1) for n > 1. - Michael De Vlieger, Nov 02 2022
LINKS
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 32.
FORMULA
It appears that this sequence is the limit of the following process. Start with {1,4} and repeatedly perform this set of operations: (1) select the second half H of the sequence; (2) append twice the terms of H, then (3) append four times the terms of H. This gives {1,4} -> {1,4,8,16} -> {1,4,8,16,16,32,32,64} -> {1,4,8,16,16,32,32,64,32,64,64,128,64,128,128,256} -> ... This has been verified for the first 150 terms.
Comment from N. J. A. Sloane, Jul 21 2014: (Start)
It is not difficult to show that the preceding conjecture is correct. In fact one can give an explicit formula for the n-th term. At generation n >= 2, the configuration of ON cells consists of a set of concentric diamonds (see the illustration). The sizes of the diamonds are given by the (n-2)nd term of A245191. Let N = A245191(n-2) = Sum_{i>=0} b_i*2^i. Then the ON cells form a set of diamonds with edge-lengths i+2 for each b_i = 1. The i-th diamond contains 4*(i+1) ON cells, and the total number of ON cells is therefore a(n) = 4*Sum_i (i+1)*b_i. The b_i are given explicitly in A245191.
For example, if n=11, N = A245191(9) = 544 = 2^5 + 2^9, so b_5 = b_9 = 1, there are two diamonds, of side lengths 7 and 11, containing a total of 4*(6+10) = 64 = a(11) ON cells. (End)
MATHEMATICA
ca = CellularAutomaton[{186, {2, {{0, 1, 0}, {3, 0, 3}, {0, 1, 0}}}, {1, 1}}, {{{1}}, 0}, 50-1, -50]; Table[Total[ca[[n]], 2], {n, 1, 50}]
CROSSREFS
Sequence in context: A312763 A312764 A166634 * A242349 A309521 A072603
KEYWORD
nonn
AUTHOR
John W. Layman, Apr 15 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 07:58 EDT 2024. Contains 372538 sequences. (Running on oeis4.)