The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A186375 a(n) equals the sum of the squares of the expansion coefficients for (x + y + 2*z)^n. 7

%I #31 Aug 27 2018 09:03:04

%S 1,6,54,588,7110,91476,1224636,16849944,236523078,3371140740,

%T 48630906324,708412918824,10403176168476,153813188724552,

%U 2287366047735480,34185974267420208,513159651195396678,7732530110414488932

%N a(n) equals the sum of the squares of the expansion coefficients for (x + y + 2*z)^n.

%C Equivalently, a(n) equals the sum of the squares of the coefficients in any one of the following polynomials: (1 + 2*x^k + x^p)^n, (2 + x^k + x^p)^n, or (1 + x^k + 2*x^p)^n, for all p > n*k and fixed k > 0.

%C Rescaling the g.f. G(x) to T(u)=G(3*u/16) moves the singular point x=1/16 to u=1/3. Period function T(u) measures precession of the J-vector along an algebraic sphere curve with local cyclic C_3 symmetry. For precise definitions, pictures, a proof certificate, and more information, see A318245. - _Bradley Klee_, Aug 22 2018

%H Vincenzo Librandi, <a href="/A186375/b186375.txt">Table of n, a(n) for n = 0..200</a>

%H E. Weisstein, <a href="http://mathworld.wolfram.com/GoursatsSurface.html">Goursat's Surface</a>, Mathworld--A Wolfram Web Resource.

%F (1) a(n) = Sum_{k=0..n} C(n,k)^2*C(2k,k)*4^(n-k).

%F Let g.f. A(x) = Sum_{n>=0} a(n)*x^n/n!^2, then

%F (2) A(x) = B(x)^2 * B(2^2*x)

%F where B(x) = Sum_{n>=0} x^n/n!^2 = BesselI(0, 2*sqrt(x)).

%F Recurrence: n^2*a(n) = 2*(10*n^2-10*n+3)*a(n-1) - 4*(4*n-5)*(4*n-3)*a(n-2). - _Vaclav Kotesovec_, Oct 20 2012

%F a(n) ~ 2^(4*n+1/2)/(Pi*n). - _Vaclav Kotesovec_, Oct 20 2012

%F a(n) = 4^n*hypergeom([1/2,-n,-n], [1,1], 1). - _Peter Luschny_, May 24 2017

%F G.f.: G(x)=Sum_{n>=0}a(n)x^n, 6*(10*x-1)*G + (192*x^2-40*x+1)*G' + x*(16*x-1)*(4*x-1)*G''=0. - _Bradley Klee_, Aug 22 2018

%e G.f.: A(x) = 1 + 6*x + 54*x^2/2!^2 + 588*x^3/3!^2 + 7110*x^4/4!^2 + ...

%e The g.f. may be expressed as:

%e A(x) = [Sum_{n>=0} x^n/n!^2]^2 *[Sum_{n>=0} (4x)^n/n!^2] where

%e [Sum_{n>=0} x^n/n!^2]^2 = 1 + 2*x + 6*x^2/2!^2 + 20*x^3/3!^2 + 70*x^4/4!^2 + ... + (2n)!/n!^2 *x^n/n!^2 + ...

%e a(4) = 256

%e + 1024 + 1024

%e + 576 + 2304 + 576

%e + 64 + 576 + 576 + 64

%e + 1 + 16 + 36 + 16 + 1 = 7110.

%p A186375 := n -> 4^n*hypergeom([1/2,-n,-n], [1,1], 1):

%p seq(simplify(A186375(n)), n=0..17); # _Peter Luschny_, May 24 2017

%t Table[Sum[Binomial[n,k]^2*Binomial[2k,k]*4^(n-k),{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 20 2012 *)

%t (* From _Bradley Klee_, Aug 22 2018: Start *)PyramidLevel[n_]:=If[n==0, {{1}}, Table[Coefficient[(2*x+y+z)^n,x^j*y^k*z^(n-j-k)]^2, {j,0,n}, {k,0,n-j}]]; a1[n_]:= Total[Flatten[PyramidLevel[n]]];

%t a1 /@ Range[0, 10]

%t RecurrenceTable[{4*(4*n-5)*(4*n-3)*a[n-2]-2*(10*n^2-10*n+3)*a[n-1]+n^2*a[n]==0, a[0]==1, a[1]==6},a,{n,0,1000}] (* End *)

%t a[ n_] := If[ n < 0, 0, Block[ {x, y, z}, Expand[ (x + y + 2 z)^n] /. {t_Integer -> t^2, x -> 1, y -> 1, z -> 1}]]; (* _Michael Somos_, Aug 27 2018 *)

%o (PARI) {a(n)=sum(k=0,n,binomial(n,k)^2*binomial(2*(n-k),n-k)*4^k)}

%o (PARI) {a(n)=n!^2*polcoeff(sum(m=0,n,x^m/m!^2)^2*sum(m=0,n,(2^2*x)^m/m!^2),n)}

%o (PARI) {a(n)=local(V=Vec((1+2*x+x^(n+2))^n));V*V~}

%Y Cf. A046816, A186376, A186377, A186378. Periods: A318245, A318417.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Feb 19 2011

%E Name edited by _Bradley Klee_, Aug 22 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 22:47 EDT 2024. Contains 372549 sequences. (Running on oeis4.)