The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A183069 L.g.f.: Sum_{n>=1,k>=0} CATALAN(n,k)^2 * x^(n+k)/n = Sum_{n>=1} a(n)*x^n/n, where CATALAN(n,k) = n*C(n+2*k-1,k)/(n+k) is the coefficient of x^k in C(x)^n and C(x) is the g.f. of the Catalan numbers. 10

%I #30 Mar 29 2023 05:10:23

%S 1,3,19,163,1626,17769,206487,2508195,31504240,406214878,5349255726,

%T 71672186953,974311431094,13408623649893,186491860191519,

%U 2617716792257955,37040913147928380,527875569932002608,7570657419156212256,109194783587953243038

%N L.g.f.: Sum_{n>=1,k>=0} CATALAN(n,k)^2 * x^(n+k)/n = Sum_{n>=1} a(n)*x^n/n, where CATALAN(n,k) = n*C(n+2*k-1,k)/(n+k) is the coefficient of x^k in C(x)^n and C(x) is the g.f. of the Catalan numbers.

%C Logarithmic derivative of A183070.

%C A bisection of A003162.

%C We conjecture that the sequence satisfies the supercongruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for all primes p >= 5 and positive integers n and k. - _Peter Bala_, Mar 20 2023

%H G. C. Greubel, <a href="/A183069/b183069.txt">Table of n, a(n) for n = 1..500</a>

%H Pedro J. Miana, Hideyuki Ohtsuka, and Natalia Romero, <a href="http://arxiv.org/abs/1602.04347">Sums of powers of Catalan triangle numbers</a>, arXiv:1602.04347 [math.NT], 2016.

%F a(n) = Sum_{k=0..n} (n-k)*C(n+k-1,k)^2/n for n>=1.

%F a(n) = Sum_{k=0..n-1} (C(2*n-1,k) - C(2*n-1,k-1))^3/C(2*n-1,n). [From a formula given in A003162 by _Michael Somos_.]

%F Recurrence: 2*n^2*(2*n-1)*(7*n^2 - 20*n + 14)*a(n) = (455*n^5 - 2427*n^4 + 4850*n^3 - 4406*n^2 + 1728*n - 216)*a(n-1) - 4*(n-2)*(2*n - 3)^2*(7*n^2 - 6*n + 1)*a(n-2). - _Vaclav Kotesovec_, Mar 06 2014

%F a(n) ~ 16^n/(9*Pi*n^2). - _Vaclav Kotesovec_, Mar 06 2014

%e L.g.f.: L(x) = x + 3*x^2/2 + 19*x^3/3 + 163*x^4/4 + 1626*x^5/5 + ...

%e L(x) = (1 + x + 2^2*x^2 + 5^2*x^3 + 14^2*x^4 + ...)*x

%e + (1 + 2^2*x + 5^2*x^2 + 14^2*x^3 + 42^2*x^4 + ...)*x^2/2

%e + (1 + 3^2*x + 9^2*x^2 + 28^2*x^3 + 90^2*x^4 + ...)*x^3/3

%e + (1 + 4^2*x + 14^2*x^2 + 48^2*x^3 + 165^2*x^4 + ...)*x^4/4

%e + (1 + 5^2*x + 20^2*x^2 + 75^2*x^3 + 275^2*x^4 + ...)*x^5/5

%e + (1 + 6^2*x + 27^2*x^2 + 110^2*x^3 + 429^2*x^4 + ...)*x^6/6 + ...

%e which consists of the squares of coefficients in the powers of C(x),

%e where C(x) = 1 + x*C(x)^2 is g.f. of the Catalan numbers.

%e ...

%e Exponentiation yields the g.f. of A183070:

%e exp(L(x)) = 1 + x + 2*x^2 + 8*x^3 + 49*x^4 + 380*x^5 + 3400*x^6 + ...

%t Table[Sum[(n-k)*Binomial[n+k-1,k]^2/n,{k,0,n}],{n,1,20}] (* _Vaclav Kotesovec_, Mar 06 2014 *)

%o (PARI) {a(n)=if(n<1,0,sum(k=0,n,(n-k)*binomial(n+k-1,k)^2/n))}

%o (PARI) {a(n)=sum(k=0,n,(binomial(2*n+1,k)-binomial(2*n+1,k-1))^3)/binomial(2*n+1, n)}

%o (Magma) [&+[(n-k)*Binomial(n+k-1, k)^2/n: k in [0..n]]: n in [1..30]]; // _Vincenzo Librandi_, Feb 16 2016

%Y Cf. A183070, A003162, A000108, A009766.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Dec 23 2010

%E a(19)-a(20) from _Vincenzo Librandi_, Feb 16 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 12 15:44 EDT 2024. Contains 373332 sequences. (Running on oeis4.)