The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181322 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of 2*n into powers of 2 less than or equal to 2^k. 10

%I #42 Feb 19 2019 13:02:28

%S 1,1,1,1,2,1,1,2,3,1,1,2,4,4,1,1,2,4,6,5,1,1,2,4,6,9,6,1,1,2,4,6,10,

%T 12,7,1,1,2,4,6,10,14,16,8,1,1,2,4,6,10,14,20,20,9,1,1,2,4,6,10,14,20,

%U 26,25,10,1,1,2,4,6,10,14,20,26,35,30,11,1,1,2,4,6,10,14,20,26,36,44,36,12,1,1,2,4,6,10,14,20,26,36,46,56,42,13,1

%N Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of 2*n into powers of 2 less than or equal to 2^k.

%C Column sequences converge towards A000123.

%H Alois P. Heinz, <a href="/A181322/b181322.txt">Antidiagonals n = 0..140, flattened</a>

%H G. Blom and C.-E. Froeberg, <a href="/A002575/a002575.pdf">Om myntvaexling (On money-changing) [Swedish]</a>, Nordisk Matematisk Tidskrift, 10 (1962), 55-69, 103. [Annotated scanned copy] See Table 4.

%F G.f. of column k: 1/(1-x) * 1/Product_{j=0..k-1} (1 - x^(2^j)).

%F A(n,k) = Sum_{i=0..k} A089177(n,i).

%F For n < 2^k, T(n,k) = A000123(k). T(n,0) = 1, T(n,1) = n+1. - _M. F. Hasler_, Feb 19 2019

%e A(3,2) = 6, because there are 6 partitions of 2*3=6 into powers of 2 less than or equal to 2^2=4: [4,2], [4,1,1], [2,2,2], [2,2,1,1], [2,1,1,1,1], [1,1,1,1,1,1].

%e Square array A(n,k) begins:

%e 1, 1, 1, 1, 1, 1, ...

%e 1, 2, 2, 2, 2, 2, ...

%e 1, 3, 4, 4, 4, 4, ...

%e 1, 4, 6, 6, 6, 6, ...

%e 1, 5, 9, 10, 10, 10, ...

%e 1, 6, 12, 14, 14, 14, ...

%p b:= proc(n, j) local nn, r;

%p if n<0 then 0

%p elif j=0 then 1

%p elif j=1 then n+1

%p elif n<j then b(n, j):= b(n-1, j) +b(2*n, j-1)

%p else nn:= 1 +floor(n);

%p r:= n-nn;

%p (nn-j) *binomial(nn, j) *add(binomial(j, h)

%p /(nn-j+h) *b(j-h+r, j) *(-1)^h, h=0..j-1)

%p fi

%p end:

%p A:= (n, k)-> b(n/2^(k-1), k):

%p seq(seq(A(n, d-n), n=0..d), d=0..13);

%t b[n_, j_] := b[n, j] = Module[{nn, r}, Which[n<0, 0, j == 0, 1, j == 1, n+1, n<j, b[n, j] = b[n-1, j] + b[2*n, j-1], True, nn = Floor[n]+1; r = n - nn; (nn-j)*Binomial[nn, j]*Sum[(Binomial[j, h]*b[j-h+r, j]*(-1)^h)/(nn-j+h), {h, 0, j-1}]]]; A[n_, k_] := b[n/2^(k-1), k]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 13}] // Flatten (* _Jean-François Alcover_, Jan 15 2014, translated from Maple *)

%o (PARI) A181322(n,k,r=1)={if(n<r,r,!k,1, r&&n/=2^(k-1); k==1, n+1, n<k, A181322(n-1,k,0)+A181322(2*n,k-1,0),n-=r=1+n\1,(r-k)*binomial(r,k)*sum(i=0,min(k-1,k+n), binomial(k,i)/(r-k+i)*A181322(k-i+n,k,0) *(-1)^i))} \\ From Maple. - _M. F. Hasler_, Feb 19 2019

%Y Columns k=0-5 give: A000012, A000027(n+1), A002620(n+2), A008804, A088932, A088954.

%Y Main diagonal gives A000123.

%Y Cf. A145515.

%Y See A262553 for another version of this array.

%Y See A072170 for a related array (having the same limiting column).

%K nonn,tabl

%O 0,5

%A _Alois P. Heinz_, Jan 26 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 18:37 EDT 2024. Contains 372664 sequences. (Running on oeis4.)