The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181018 Maximum number of 1's in an n X n binary matrix with no three 1's adjacent in a line along a row, column or diagonally. 4

%I #76 Jul 08 2018 19:59:04

%S 1,4,6,9,16,20,26,36,42,52,64,74,86,100,114,130

%N Maximum number of 1's in an n X n binary matrix with no three 1's adjacent in a line along a row, column or diagonally.

%C Diagonal of A181019.

%C Three or more "1"s may be adjacent in an L-shape or step shape (cf. bottom of first example) or 2 X 2 square (top right of 2nd example) or similar. One possible (not always optimal) solution is therefore to fill the square with 2 X 2 squares of "1"s, separated by rows of "0"s: this yields the lower bound (n - floor(n/3))^2 = ceiling(2n/3)^2 given in FORMULA. I conjecture that this is optimal for n = 2 (mod 3) and that a(n) ~ (2n/3)^2. For n = 3k, the array can be filled with 2k(2k+1) "1"s by repeating the optimal solution for n = 3 on the diagonal, and filling the rest with 2 X 2 blocks separated by rows of "0"s, cf. the 4th example for 6 X 6. - _M. F. Hasler_, Jul 17 2015 [Conjecture proved to be wrong, see below. - _M. F. Hasler_, Jan 19 2016]

%C 74 <= a(12) <= 77. - _Manfred Scheucher_, Jul 23 2015

%C You can repeat a 4 X 2 block [1100; 0011] infinitely in both directions and then crop the needed square. That gives ceiling(n^2/2). It eventually surpasses the solutions we've found so far: at 17*17 the pattern above gives 12*12=144 but this one ceiling(17*17/2)=145. The credit for finding this goes to Jaakko Himberg. - _Juhani Heino_, Aug 11 2015

%H Manfred Scheucher, <a href="/A181018/a181018.py.txt">Python Script</a>

%H Peter J. Taylor, <a href="/A181018/a181018.java.txt">Java program to compute terms</a>

%F a(n) >= ceiling(2n/3)^2; a(3k) >= A002943(k) = 2k(2k+1). - _M. F. Hasler_, Jul 17 2015; revised by _Juhani Heino_, Aug 11 2015

%F a(n) >= ceiling(n^2/2). - _Juhani Heino_, Aug 11 2015

%e Some solutions for 6 X 6:

%e 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1

%e 1 0 1 0 0 1 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 1

%e 1 1 0 0 1 0 1 1 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0

%e 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1

%e 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1

%e 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0

%e A solution with 73 ones for 12 X 12 (I replaced "0" with "." for readability):

%e 1 1 . 1 1 . 1 1 . 1 . 1

%e 1 1 . . 1 1 . 1 1 . 1 1

%e . . . 1 . . . . . . 1 .

%e 1 1 . 1 . 1 . 1 1 . . 1

%e . 1 1 . . 1 1 . . 1 1 .

%e 1 . . . 1 . 1 . 1 . . 1

%e 1 1 . . 1 1 . . 1 . 1 .

%e . 1 . 1 . 1 . 1 . . 1 1

%e 1 . . 1 1 . . 1 1 . . 1

%e . 1 . . . . 1 . 1 . 1 .

%e 1 1 . 1 1 . 1 1 . . 1 1

%e 1 . 1 . 1 1 . 1 . 1 . 1

%e - _Manfred Scheucher_, Jul 23 2015

%e An optimal solution with 74 ones (denoted by O) for 12 X 12 (also symmetric):

%e O . O . O . O O . O O .

%e O O . O O . . . O O . O

%e . O . O . O O . . . O O

%e O . . . O O . O O . O .

%e . O O . . . O . . . . O

%e O O . O O . O . O O . .

%e . . O O . O . O O . O O

%e O . . . . O . . . O O .

%e . O . O O . O O . . . O

%e O O . . . O O . O . O .

%e O . O O . . . O O . O O

%e . O O . O O . O . O . O - _Giovanni Resta_, Jul 29 2015

%o (Java) See Taylor link

%o (MATLAB with CPLEX)

%o function v = A181018(n)

%o %

%o Grid = [1:n]' * ones(1,n) + n*ones(n,1)*[0:n-1];

%o f = -ones(n^2,1);

%o A = sparse(4*(n-2)*(n-1),n^2);

%o count = 0;

%o for i =1:n

%o for j = 1:n-2

%o count = count+1;

%o A(count, [Grid(i,j),Grid(i,j+1),Grid(i,j+2)]) = 1;

%o end

%o end

%o for i = 1:n-2

%o for j = 1:n

%o count = count+1;

%o A(count, [Grid(i,j),Grid(i+1,j),Grid(i+2,j)]) = 1;

%o end

%o end

%o for i = 1:n-2

%o for j = 1:n-2

%o count = count+2;

%o A(count-1,[Grid(i,j+2),Grid(i+1,j+1),Grid(i+2,j)]) = 1;

%o A(count, [Grid(i,j),Grid(i+1,j+1),Grid(i+2,j+2)]) = 1;

%o end

%o end

%o b = 2*ones(4*(n-2)*(n-1),1);

%o [x,v,exitflag,output] = cplexbilp(f,A,b);

%o end;

%o for n = 1:11

%o A(n) = A181018(n);

%o end

%o A % _Robert Israel_, Jan 14 2016

%Y Cf. A000769, A181019, A219760, A225623.

%K nonn,more,nice

%O 1,2

%A _R. H. Hardin_, Sep 30 2010

%E a(11)-a(12) from _M. F. Hasler_, Jul 20 2015

%E a(12) deleted by _Manfred Scheucher_, Jul 23 2015

%E a(12) from _Giovanni Resta_, Jul 29 2015

%E PARI code (which implemented a conjectured formula shown to underestimate) deleted by _Peter J. Taylor_, Jan 06 2016

%E a(13)-a(15) from _Peter J. Taylor_, Jan 09 2016

%E a(16) from _Peter J. Taylor_, Jan 14 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 14:10 EDT 2024. Contains 373105 sequences. (Running on oeis4.)