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1. Introduction

The in�nite product

�(a; x) =
1Y
n=0

1� ax4n+3
1� ax4n+1

converges for arbitrary complex a provided jxj < 1. Let N and m be positive
integers with N2m > 4. Let x denote the real algebraic number

x =
N
p
m�

p
N2m� 4
2

:

We shall �nd the simple continued fraction expansion of the in�nite products

�(
p
m;x) =

1Y
n=0

1�
p
mx4n+3

1�
p
mx4n+1

and �(�
p
m;x) =

1Y
n=0

1 +
p
mx4n+3

1 +
p
mx4n+1

Our results were motivated by conjectures made by Paul Hanna in sequences
A170540 through A170543, who considers the particular cases of the above
corresponding to m = 1 and N = 4; 6; 8; or N = 10. Hanna works with the real
number

exp

 1X
n=1

1

n (xn + x�n)

!
but it is not di¢ cult to show that this is equal to �(1; x):

2. Preliminaries on continued fractions

We adopt the standard compact notation

a0 +
a1
b1 +

a2
b2 +

a3
b3 + � � �

to denote the general continued fraction

a0 +
a1

b1 +
a2

b2+
a3

b3+���

. (1)

We refer to the terms an; n � 1; in (1) as the partial numerators and the terms
bn as the partial denominators of the continued fraction. A simple continued
fraction is a continued fraction in which a0 is an integer, all the partial numera-
tors are equal to 1 and each partial denominator is a positive integer. We recall
(see for example [2, Theorem 14]) that every positive irrational real number has

1



a unique expansion as a simple continued fraction (with an in�nite number of
terms). Rational numbers have �nite simple continued fraction expansions.
Given a sequence �n of non-zero complex numbers, the continued fraction

a0 +
�1a1

�1b1 +
�1�2a2

�2b2+
�2�3a3
�3b3+���

(�n 6= 0) (2)

is said to be obtained from (1) by means of an equivalence transformation.
The continued fractions (1) and (2) are equivalent in the sense that the n-th
convergents of both fractions have the same value for all n [3, p.19]. If in (1)
the partial numerators an are all nonzero then we can choose complex numbers
�1; �2; �3,::: so that

1 = �1a1 = �1�2a2 = �2�3a3 = : : : .

By this means we can arrange that the partial numerators in the equivalent
continued fraction (2) are all equal to 1.
In the next section we introduce another continued fraction transformation
(Lemma 1) that converts a continued fraction with partial numerators equal
to �1 into a continued fraction with all partial numerators equal to +1.

3. Some continued fraction transformations

In order to prove Lemma 1 we will need the following preliminary result.

Proposition 1. If a1; a2; : : : ; an is a sequence of complex numbers then

1 +
1

a1 � 1 +
1

a2 + � � � +
1

an
=
1

1 �
1

a1 +

1

a2 + � � � +
1

an
: (3)

Proof. By induction on n. The result is easily veri�ed for n = 1. Assume
that (3) is true for a �xed integer n > 1: Then by induction

1 +
1

a1 � 1 +
1

a2 + � � � +
1

an+1
= 1 +

1

a1 � 1 +
1

a2 + � � � +
1

an�1 +

1�
an +

1
an+1

�
=

1

1 �
1

a1 +

1

a2 + � � � +
1

an�1 +

1�
an +

1
an+1

�
=

1

1 �
1

a1 +

1

a2 + � � � +
1

an+1

and the induction goes through. �

Lemma 1. If a1; a2; :::; an is a sequence of complex numbers then

1

1 �
1

a1 �
1

a2 �
1

a3 � � � � �
1

an
= 1 +

1

a1 � 2 +
1

1 +

1

a2 � 2 +
1

1 + � � � +
1

an � 2 +
1

1
:

(4)
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Proof. By induction on n. The result (4) is easily veri�ed for n = 1. Assume
that (4) is true for a �xed integer n > 1: Let F (n) denote the rhs of (4). Then

F (n+ 1) = 1 +
1

a1 � 2 +
1

1 +

1

a2 � 2 +
1

1 + � � � +
1

an � 2 +
1

1 +

1

an+1 � 2 +
1

1

= 1 +
1

a1 � 2 + 1
A

;

where

A = 1 +
1

a2 � 2 +
1

1 + � � � +
1

an � 2 +
1

1 +

1

an+1 � 2 +
1

1

=
1

1 �
1

a2 �
1

a3 � � � � �
1

an+1

by the induction hypothesis. Thus

F (n+ 1) = 1 +
1

a1 � 2 + 1� 1
a2 �

1
a3 � ��� �

1
an+1

= 1 +
1

a1 � 1 �
1

a2 �
1

a3 � � � � �
1

an+1

= 1 +
1

a1 � 1 +
1

(�a2) +
1

a3 + � � � +
1

((�1)nan+1)
[equivalence transformation]

=
1

1 �
1

a1 +

1

(�a2) +
1

a3 + � � � +
1

((�1)nan+1)
[by Proposition 1]

=
1

1 �
1

a1 �
1

a2 � � � � �
1

an+1
;

where we have used another equivalence transformation to obtain the �nal ex-
pression. This completes the proof by induction. �

4. Simple continued fraction expansions

The following continued fraction expansion is a particular case of a more general
result due to Ramanujan. For a proof consult [1, Entry 12 with b = 0 and a2

replaced with a].

�(a; x) =
1Y
n=0

1� ax4n+3
1� ax4n+1 =

1

1 �
ax

1 + x2 �
ax3

1 + x4 �
ax5

1 + x6 � � � � (5)

valid for arbitrary complex a provided jxj < 1:
An equivalence transformation yields

1Y
n=0

1� ax4n+3
1� ax4n+1 =

1

1 �
1

1
a

�
1
x + x

�
�

1
1
x2 + x

2 �
1

1
a

�
1
x3 + x

3
�
�

1
1
x4 + x

4 � � � � (6)
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valid for 0 < jxj < 1:
There are several ways in which we can choose values for a and x so that the par-
tial denominators of this continued fraction become integers. We deal with two
cases here and leave consideration of a further two cases to Part 2 of these notes.

Case 1.

Let N and m be positive integers with N2m > 4 and set a =
p
m: Let x0

denote the real algebraic number

x0 =
N
p
m�

p
N2m� 4
2

so that 0 < x0 < 1 and

x0 +
1

x0
= N

p
m: (7)

A well-known property of Tn(x), the n-th Chebyshev polynomial of the �rst
kind, is the identity

Tn

�
x+ x�1

2

�
=
xn + x�n

2
x 6= 0:

Thus from (7)

xn0 +
1

xn0
= 2Tn

�
N
p
m

2

�
n = 0; 1; 2; 3; :::

and the continued fraction (6) becomes
1Y
n=0

1�
p
mx4n+30

1�
p
mx4n+10

=
1

1 �
1

1p
m
2T1

�
N
p
m

2

�
�

1

2T2

�
N
p
m

2

�
�

1

1p
m
2T3

�
N
p
m

2

�
�

1

2T4

�
N
p
m

2

�
� � � �

=
1

1 �
1

N �
1

mN2 � 2 �
1

mN3 � 3N �

1

m2N4 � 4mN2 + 2 � � � � :

Applying Lemma 1 to this continued fraction we obtain the continued fraction
expansion
1Y
n=0

1�
p
mx4n+30

1�
p
mx4n+10

= 1 +
1

1p
m
2T1

�
N
p
m

2

�
� 2 +

1

1 +

1

2T2

�
N
p
m

2

�
� 2

+

1

1 +

1

1p
m
2T3

�
N
p
m

2

�
� 2 +

1

1 +

1

2T4

�
N
p
m

2

�
� 2 + � � �

:

(8)
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Next we will show that the partial denominators of this continued fraction are
positive integers, with three possible exceptions, so that, apart from these cases,
(8) is the simple continued fraction representation of the real number given by
the in�nite product. In the case of the three exceptions we can still obtain a
simple continued fraction expansion from (8) after a little extra work.

Proposition 2. Let N;m be positive integers such that N2m > 4: Then for

k � 1 both 2T2k
�
N
p
m

2

�
� 2 and 1p

m
2T2k+3

�
N
p
m

2

�
� 2 are positive integers.

Proof. The Chebyshev polynomials Tn(x) satisfy the recurrence equation

Tn+1(x) = 2xTn(x)� Tn�1(x) [T0(x) = 1; T1(x) = x]:

Calculation gives 2T1
�
N
p
m

2

�
= N

p
m and 2T2

�
N
p
m

2

�
= N2m�2; an integer.

A straightforward induction proof, making use of the recurrence equation, shows

that the numbers 2T2k
�
N
p
m

2

�
are integers, whilst the numbers 2T2k+1

�
N
p
m

2

�
equal an integer multiplied by

p
m: Therefore the quantities 2T2k

�
N
p
m

2

�
� 2

and 1p
m
2T2k+3

�
N
p
m

2

�
� 2 are integers. We now show that they are positive

integers greater than or equal to 3.
An explicit formula for the Chebyshev polynomials of the �rst kind is

Tn(x) =

bn2 cX
k=0

�
n

2k

�
(x2 � 1)kxn�2k:

An easy consequence of this result is the inequality

Tn(x) > T3(x) = 4x
3 � 3x [x > 1 and n > 3]: (9)

Thus for k � 2

2T2k

�
N
p
m

2

�
> 2T3

�
N
p
m

2

�
= N

p
m(N2m� 3)

� 2

if we recall that N2m > 4:

In addition

2T2

�
N
p
m

2

�
= N2m� 2

> 2:
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Hence, for k � 1; 2T2k
�
N
p
m

2

�
� 2 is a positive integer.

Similarly, for k � 1 we have from (9)

1p
m
2T2k+3

�
N
p
m

2

�
>

1p
m
2T3

�
N
p
m

2

�
= N(N2m� 3)

� 2:

and hence the partial denominator 1p
m
2T2k+3

�
N
p
m

2

�
�2 is a positive integer. �

The only partial denominators of the continued fraction (8) that are not positive
integers are

1p
m
2T1

�
N
p
m

2

�
� 2 = N � 2

when N = 1 or N = 2 and

1p
m
2T3

�
N
p
m

2

�
� 2 = N(N2m� 3)� 2

when N = 1 and m = 5 (recall the assumption N2m > 4): In these cases we
have to do a further simpli�cation to get the continued fraction (8) into the form
of a simple continued fraction. We state the �nal result in the form of a theorem.

Theorem 1. Let N;m be positive integers such that N2m > 4:

(a) When N � 3 we have the simple continued fraction expansion

1Y
n=0

1�
p
m
�
N
p
m�

p
N2m�4
2

�4n+3
1�

p
m
�
N
p
m�

p
N2m�4
2

�4n+1 = 1 +
1

1p
m
2T1

�
N
p
m

2

�
� 2 +

1

1 +

1

2T2

�
N
p
m

2

�
� 2

+

1

1 +

1

1p
m
2T3

�
N
p
m

2

�
� 2 +

1

1 +

1

2T4

�
N
p
m

2

�
� 2 + � � �

= 1 +
1

N � 2 +
1

1 +

1

mN2 � 4 +
1

1 +

1

mN3 � 3N � 2

+

1

1 +

1

mN2(mN2 � 4) +
1

1 + � � � :
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(b) When N = 2 and m > 1 we have the simple continued fraction expansion

1Y
n=0

1�
p
m
�p
m�

p
m� 1

�4n+3
1�

p
m
�p
m�

p
m� 1

�4n+1 = 2 +
1

2T2 (
p
m)� 2 +

1

1 +

1
1p
m
2T3 (

p
m)� 2 +

1

1 +

1

2T4 (
p
m)� 2 +

1

1 +

1
1p
m
2T5 (

p
m)� 2 +

1

1 + � � �

= 2 +
1

4m� 4 +
1

1 +

1

8m� 8 +
1

1 +

1

16m2 � 16m

+

1

1 +

1

32m2 � 40m+ 8 + � � � :

(c) When N = 1 and m > 4 we have the simple continued fraction expansion

1Y
n=0

1�
p
m
�p

m�
p
m�4

2

�4n+3
1�

p
m
�p

m�
p
m�4

2

�4n+1 = �(m� 3) + 1

m� 4 +
1

1 +

1

2T4

�p
m
2

�
� 2 +

1

1

+

1

1p
m
2T5

�p
m
2

�
� 2 +

1

1 +

1

2T6

�p
m
2

�
� 2 +

1

1 + � � �

= �(m� 3) + 1

m� 4 +
1

1 +

1

m(m� 4) +
1

1 +

1

m2 � 5m+ 3 +
1

1 +

1

(m� 4)(m� 1)2 + � � � :

�

Hanna has recorded four particular cases of part(a) of Theorem 1 in A174500
(m = 1 and N = 4), A174501 (m = 1 and N = 6), A174502 (m = 1 and N = 8)
and A174503 (m = 1 and N = 10).

Case 2

We return to Ramanujan�s continued fraction expansion (5). Let N and m
be positive integers with N2m > 4; as before, but now we set a = �

p
m: As

before, let x0 denote the real algebraic number

x0 =
N
p
m�

p
N2m� 4
2

:
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Then with these choices Ramanujan�s continued fraction (5) becomes

�(�
p
m;x0) =

1Y
n=0

1 +
p
mx4n+30

1 +
p
mx4n+10

=
1

1 +

p
mx

1 + x2 +

p
mx3

1 + x4 +

p
mx5

1 + x6 + � � �

=
1

1 +

1
1p
m

�
1
x + x

�
+

1
1
x2 + x

2 +

1
1p
m

�
1
x3 + x

3
�
+

1
1
x4 + x

4 + � � �

by an equivalence transformation. Expressing the partial denominators of this
continued fraction in terms of the Chebyshev polynomials of the �rst kind we
have the following result.

Theorem 2. Let N;m be positive integers such that N2m > 4: There holds
the simple continued fraction expansion

1Y
n=0

1 +
p
m
�
N
p
m�

p
N2m�4
2

�4n+3
1 +

p
m
�
N
p
m�

p
N2m�4
2

�4n+1 =
1

1 +

1

1p
m
2T1

�
N
p
m

2

�
+

1

2T2

�
N
p
m

2

�
+

1

1p
m
2T3

�
N
p
m

2

�
+

1

2T4

�
N
p
m

2

�
+ � � �

=
1

1 +

1

N +

1

mN2 � 2 +
1

mN3 � 3N +

1

m2N4 � 4mN2 + 2 + � � � :

�

In the particular casem = 1; the sequence of partial denominators of this simple
continued fraction becomes the sequence [1; 2T1

�
N
2

�
; 2T2

�
N
2

�
; 2T3

�
N
2

�
; : : :].

There are many sequences of this type currently in the OEIS database (but
with initial term 2 rather than 1): see A005248 (N = 3), A003500 (N = 4),
A003501 (N = 5), A003499 (N = 6), A056854 (N = 7), A086903 (N = 8),
A056918 (N = 9), A087799 (N = 10), A057076 (N = 11), A087800 (N = 12),
A078363 (N = 13), A067902 (N = 14), A078365 (N = 15), A090727 (N = 16),
A078367 (N = 17), A087215 (N = 18), A078369 (N = 19), A090728 (N = 20),
A090729 (N = 21), A090730 (N = 22), A090731 (N = 23), A090732 (N = 24),
A090733 (N = 25), A090247 (N = 26), A090248 (N = 27), A090249 (N = 28)
and A090251 (N = 29).

In Part 2 of theses notes we �nd the simple continued fraction expansions of the
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in�nite products

1Y
n=0

1�
p
mx4n+3

1 +
p
mx4n+1

and
1Y
n=0

1 +
p
mx4n+3

1�
p
mx4n+1

;

where now x denotes an algebraic number of the form

x =

p
N2m+ 4�N

p
m

2
:
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