login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A168597 Squares of the central trinomial coefficients (A002426). 6
1, 1, 9, 49, 361, 2601, 19881, 154449, 1225449, 9853321, 80156209, 658076409, 5444816521, 45343869481, 379735715529, 3195538786449, 27004932177129, 229066136374761, 1949470542590481, 16640188083903609, 142415188146838161 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Ignoring initial term, a(n) equals the logarithmic derivative of A168598.
Partial sums of A007987. Hence, a(n) is the number of irreducible words of length at most 2n in the free group with generators x,y such that the total degree of x and the total degree of y both equal zero. - Max Alekseyev, Jun 05 2011
The number of ways a king, starting at the origin of an infinite chessboard, can return to the origin in n moves, where leaving the king where it is counts as a move. Cf. A094061. - Peter Bala, Feb 14 2017
LINKS
FORMULA
a(n) = A002426(n)^2.
G.f.: hypergeom([1/12, 5/12],[1],1728*x^4*(x-1)*(9*x-1)*(3*x+1)^2/(81*x^4-36*x^3-26*x^2-4*x+1)^3)/(81*x^4-36*x^3-26*x^2-4*x+1)^(1/4). - Mark van Hoeij, May 07 2013
G.f.: 1 / AGM(1+3*x, sqrt((1-x)*(1-9*x))), where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean. - Paul D. Hanna, Sep 04 2014
G.f.: 1 / AGM((1-x)*(1-3*x), (1+x)*(1+3*x)) = Sum_{n>=0} a(n)*x^(2*n). - Paul D. Hanna, Oct 04 2014
a(n) = (-1)^n*hypergeom([1/2,-n],[1],4)*hypergeom([(1-n)/2,-n/2],[1],4). - Peter Luschny, Nov 10 2014
a(n) ~ 3^(2*n+1) / (4*Pi*n). - Vaclav Kotesovec, Sep 28 2019
From Peter Bala, Feb 08 2022: (Start)
a(n) = Sum_{k = 0..n} (-3)^(n-k)*binomial(2*k,k)*binomial(n,k)* binomial(n+k,k).
n^2*(2*n-3)*a(n)= (7*n^2-14*n+6)*(2*n-1)*a(n-1) + 3*(7*n^2-14*n+6)*(2*n-3)*a(n-2) - 27*(2*n-1)*(n-2)^2*a(n-3) with a(0) = 1, a(1) = 1 and a(2) = 9.
G.f.: A(x) = Sum_{n >= 0} binomial(2*n,n)^2*x^n/(1 + 3*x)^(2*n+1).
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all prime p and positive integers n and k.
Conjecture: The stronger congruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for all primes p >= 5 and positive integers n and k. (End)
MAPLE
a := n -> (-1)^n*hypergeom([1/2, -n], [1], 4)*hypergeom([1/2-n/2, -n/2], [1], 4): seq(simplify(a(n)), n=0..20); # Peter Luschny, Nov 10 2014
MATHEMATICA
Table[(-1)^n*Hypergeometric2F1[1/2, -n, 1, 4] * Hypergeometric2F1[(1 - n)/2, -n/2, 1, 4], {n, 0, 50}] (* G. C. Greubel, Feb 26 2017 *)
PROG
(PARI) {a(n)=polcoeff((1+x+x^2 +x*O(x^n))^n, n)^2}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* Using AGM: */
{a(n)=polcoeff( 1 / agm(1+3*x, sqrt((1+3*x)^2 - 16*x +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 04 2014
CROSSREFS
Sequence in context: A188235 A286810 A066558 * A169724 A135625 A356243
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Dec 01 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 02:23 EDT 2024. Contains 371264 sequences. (Running on oeis4.)