The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A165407 Expansion of 1/(1-x-x^3*c(x^3)), c(x) the g.f. of A000108. 5

%I #43 Nov 11 2022 04:36:31

%S 1,1,1,2,3,4,7,11,16,27,43,65,108,173,267,440,707,1105,1812,2917,4597,

%T 7514,12111,19196,31307,50503,80380,130883,211263,337284,548547,

%U 885831,1417582,2303413,3720995,5965622,9686617,15652239,25130844,40783083,65913927

%N Expansion of 1/(1-x-x^3*c(x^3)), c(x) the g.f. of A000108.

%C Hankel transform is A010892(n+1).

%C Row sums of A165408.

%C Number of UF-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are UF-equivalent iff the positions of pattern UF are identical in these paths. This also works for the pattern FU. - _Sergey Kirgizov_, Apr 08 2018

%C a(n) is the total number of lattice paths from (0,0) to (n-2*i,i) that do not go above the diagonal x=y using steps in {(1,0), (0,1)}. - _Alois P. Heinz_, Sep 20 2022

%H Alois P. Heinz, <a href="/A165407/b165407.txt">Table of n, a(n) for n = 0..2000</a>

%H Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, <a href="https://arxiv.org/abs/1804.01293">Enumeration of Łukasiewicz paths modulo some patterns</a>, arXiv:1804.01293 [math.CO], 2018.

%H J.-L. Baril and A. Petrossian, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Baril/baril3.html">Equivalence Classes of Motzkin Paths Modulo a Pattern of Length at Most Two</a>, J. Int. Seq. 18 (2015) 15.7.1

%F G.f.: 2/(1 - 2*x + sqrt(1-4*x^3)) = 1/(1-x-x^3/(1-x^3/(1-x^3/(1-x^3/(1-.... (continued fraction).

%F a(n) = Sum_{k=0..n} if(n<=3k, C((n+k)/2,k)*((3*k-n)/2 + 1)*(1+(-1)^(n-k) )/(2*(k+1)).

%F a(n) = Sum_{k=0..n+1} Fibonacci(n-k+1)*(0^k - A000108((k-2)/3)*(1+2*cos(2*Pi*(k-2)/3))/3).

%F (n+1)*a(n) = (n+1)*a(n-1) + (n+1)*a(n-2) +2*(2*n-7)*a(n-3) -2*(2*n-7)*a(n-4) -2*(2*n-7)*a(n-5). - _R. J. Mathar_, Nov 15 2011

%F a(3*n) = A026726(n); a(3*n+1) = A026671(n); a(3*n+2) = A026674(n+1). - _Philippe Deléham_, Feb 01 2014

%F Limit_{n->oo} a(n+1)/a(n) = A001622. - _Alois P. Heinz_, Sep 15 2022

%p b:= proc(x, y) option remember; `if`(y<=x, `if`(x=0, 1,

%p b(x-1, y)+`if`(y>0, b(x, y-1), 0)), 0)

%p end:

%p a:= n-> add(b(n-2*i, i), i=0..n/3):

%p seq(a(n), n=0..40); # _Alois P. Heinz_, Sep 20 2022

%t b[x_, y_]:= b[x, y]= If[y<=x, If[x==0, 1, b[x-1, y] +If[y>0, b[x, y-1], 0]], 0];

%t a[n_] := Sum[b[n-2*i, i], {i, 0, n/3}];

%t Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Oct 08 2022, after _Alois P. Heinz_ *)

%t CoefficientList[Series[(Sqrt[1-4*x^3] -1+2*x)/(2*x*(1-x-x^2)), {x,0,50}], x] (* _G. C. Greubel_, Nov 09 2022 *)

%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 50); Coefficients(R!( (Sqrt(1-4*x^3) -1+2*x)/(2*x*(1-x-x^2)) )); // _G. C. Greubel_, Nov 09 2022

%o (SageMath)

%o def A165407_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( 2/(1-2*x+sqrt(1-4*x^3)) ).list()

%o A165407_list(50) # _G. C. Greubel_, Nov 09 2022

%Y Cf. A000045, A000108, A001622, A010892, A165408.

%Y Trisections give: A026726, A026671, A026674.

%K nonn,easy

%O 0,4

%A _Paul Barry_, Sep 17 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 13:17 EDT 2024. Contains 372552 sequences. (Running on oeis4.)