The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A162590 Polynomials with e.g.f. exp(x*t)/csch(t), triangle of coefficients read by rows. 6

%I #27 Dec 06 2023 12:26:20

%S 0,1,0,0,2,0,1,0,3,0,0,4,0,4,0,1,0,10,0,5,0,0,6,0,20,0,6,0,1,0,21,0,

%T 35,0,7,0,0,8,0,56,0,56,0,8,0,1,0,36,0,126,0,84,0,9,0,0,10,0,120,0,

%U 252,0,120,0,10,0,1,0,55,0,330,0,462,0,165,0,11,0,0,12,0,220,0,792,0,792,0

%N Polynomials with e.g.f. exp(x*t)/csch(t), triangle of coefficients read by rows.

%C Comment from Peter Bala (Dec 06 2011): "Let P denote Pascal's triangle A070318 and put M = 1/2*(P-P^-1). M is A162590 (see also A131047). Then the first column of (I-t*M)^-1 (apart from the initial 1) lists the row polynomials for" A196776(n,k), which gives the number of ordered partitions of an n set into k odd-sized blocks. - _Peter Luschny_, Dec 06 2011

%C The n-th row of the triangle is formed by multiplying by 2^(n-1) the elements of the first row of the limit as k approaches infinity of the stochastic matrix P^(2k-1) where P is the stochastic matrix associated with the Ehrenfest model with n balls. The elements of a stochastic matrix P give the probability of arriving in a state j given the previous state i. In particular the sum of every row of the matrix must be 1, and so the sum of the terms in the n-th row of this triangle is 2^(n-1). Furthermore, by the properties of Markov chains, we can interpret P^(2k) as the (2k)-step transition matrix of the Ehrenfest model and its limit exists and it is again a stochastic matrix. The rows of the triangle divided by 2^(n-1) are the even rows (second, fourth, ...) and the odd rows (first, third, ...) of the limit matrix P^(2k). - _Luca Onnis_, Oct 29 2023

%D Paul and Tatjana Ehrenfest, Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem, Physikalische Zeitschrift, vol. 8 (1907), pp. 311-314.

%H Luca Onnis, <a href="/A162590/a162590.gif">Animation of the Ehrenfest model</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Ehrenfest_model">Ehrenfest model</a>.

%F p_n(x) = Sum_{k=0..n} (k mod 2)*binomial(n,k)*x^(n-k).

%F E.g.f.: exp(x*t)/csch(t) = 0*(t^0/0!) + 1*(t^1/1!) + (2*x)*(t^2/2!) + (3*x^2+1)*(t^3/3!) + ...

%F The 'co'-polynomials with generating function exp(x*t)*sech(t) are the Swiss-Knife polynomials (A153641).

%e Triangle begins:

%e 0

%e 1, 0

%e 0, 2, 0

%e 1, 0, 3, 0

%e 0, 4, 0, 4, 0

%e 1, 0, 10, 0, 5, 0

%e 0, 6, 0, 20, 0, 6, 0

%e 1, 0, 21, 0, 35, 0, 7, 0

%e ...

%e p[0](x) = 0;

%e p[1](x) = 1

%e p[2](x) = 2*x

%e p[3](x) = 3*x^2 + 1

%e p[4](x) = 4*x^3 + 4*x

%e p[5](x) = 5*x^4 + 10*x^2 + 1

%e p[6](x) = 6*x^5 + 20*x^3 + 6*x

%e p[7](x) = 7*x^6 + 35*x^4 + 21*x^2 + 1

%e p[8](x) = 8*x^7 + 56*x^5 + 56*x^3 + 8*x

%e .

%e Cf. the triangle of odd-numbered terms in rows of Pascal's triangle (A034867).

%e p[n] (k), n=0,1,...

%e k=0: 0, 1, 0, 1, 0, 1, ... A000035, (A059841)

%e k=1: 0, 1, 2, 4, 8, 16, ... A131577, (A000079)

%e k=2: 0, 1, 4, 13, 40, 121, ... A003462

%e k=3: 0, 1, 6, 28, 120, 496, ... A006516

%e k=4: 0, 1, 8, 49, 272, 1441, ... A005059

%e k=5: 0, 1, 10, 76, 520, 3376, ... A081199, (A016149)

%e k=6: 0, 1, 12, 109, 888, 6841, ... A081200, (A016161)

%e k=7: 0, 1, 14, 148, 1400, 12496, ... A081201, (A016170)

%e k=8: 0, 1, 16, 193, 2080, 21121, ... A081202, (A016178)

%e k=9: 0, 1, 18, 244, 2952, 33616, ... A081203, (A016186)

%e k=10: 0, 1, 20, 301, 4040, 51001, ... ......., (A016190)

%e .

%e p[n] (k), k=0,1,...

%e p[0]: 0, 0, 0, 0, 0, 0, ... A000004

%e p[1]: 1, 1, 1, 1, 1, 1, ... A000012

%e p[2]: 0, 2, 4, 6, 8, 10, ... A005843

%e p[3]: 1, 4, 13, 28, 49, 76, ... A056107

%e p[4]: 0, 8, 40, 120, 272, 520, ... A105374

%e p[5]: 1, 16, 121, 496, 1441, 3376, ...

%e p[6]: 0, 32, 364, 2016, 7448, 21280, ...

%p # Polynomials: p_n(x)

%p p := proc(n,x) local k;

%p pow := (n,k) -> `if`(n=0 and k=0,1,n^k);

%p add((k mod 2)*binomial(n,k)*pow(x,n-k),k=0..n) end;

%p # Coefficients: a(n)

%p seq(print(seq(coeff(i!*coeff(series(exp(x*t)/csch(t), t,16),t,i),x,n), n=0..i)), i=0..8);

%t p[n_, x_] := Sum[Binomial[n, 2*k-1]*x^(n-2*k+1), {k, 0, n+2}]; row[n_] := CoefficientList[p[n, x], x] // Append[#, 0]&; Table[row[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Jun 28 2013 *)

%t n = 15; "n-th row"

%t mat = Table[Table[0, {j, 1, n + 1}], {i, 1, n + 1}];

%t mat[[1, 2]] = 1;

%t mat[[n + 1, n]] = 1;

%t For[i = 2, i <= n, i++, mat[[i, i - 1]] = (i - 1)/n ];

%t For[i = 2, i <= n, i++, mat[[i, i + 1]] = (n - i + 1)/n];

%t mat // MatrixForm;

%t P2 = Dot[mat, mat];

%t R1 = Simplify[

%t Eigenvectors[Transpose[P2]][[1]]/

%t Total[Eigenvectors[Transpose[P2]][[1]]]]

%t R2 = Table[Dot[R1, Transpose[mat][[k]]], {k, 1, n + 1}]

%t even = R1*2^(n - 1) (* _Luca Onnis_, Oct 29 2023_ *)

%Y Cf. A119467.

%K nonn,tabl

%O 0,5

%A _Peter Luschny_, Jul 07 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 15:27 EDT 2024. Contains 372603 sequences. (Running on oeis4.)