The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156616 G.f.: Product_{n>0} ((1+x^n)/(1-x^n))^n. 51

%I #43 Jan 05 2022 13:53:30

%S 1,2,6,16,38,88,196,420,878,1794,3584,7032,13572,25792,48352,89512,

%T 163774,296444,531234,943072,1659560,2896376,5015700,8622108,14718652,

%U 24960138,42062200,70458160,117349856,194381704,320295312,525123604

%N G.f.: Product_{n>0} ((1+x^n)/(1-x^n))^n.

%C Generating function for a sum over strict plane partitions weighted with 2 powered to their number of connected components.

%C The inverse Euler transform is apparently 2, 3, 6, 6, 10, 9, 14, 12, 18, 15, 22, 18, 26, 21, ..., A016825 interlaced with A008585. - _R. J. Mathar_, Apr 23 2009

%C In general, for m >= 1, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^(m*k), then a(n) ~ exp(m/12 + 3/2 * (7*m*Zeta(3)/2)^(1/3) * n^(2/3)) * m^(1/6 + m/36) * (7*Zeta(3))^(1/6 + m/36) / (A^m * 2^(2/3 + m/9) * sqrt(3*Pi) * n^(2/3 + m/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - _Vaclav Kotesovec_, Aug 17 2015

%C In general, for m >= 0, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^(k^m), then a(n) ~ ((2^(m+2)-1) * Gamma(m+2) * Zeta(m+2) / (2^(2*m+3) * n))^((1-2*Zeta(-m))/(2*m+4)) * exp((m+2)/(m+1) * ((2^(m+2)-1) * n^(m+1) * Gamma(m+2) * Zeta(m+2) / 2^(m+1))^(1/(m+2)) + Zeta'(-m)) / sqrt((m+2)*Pi*n). - _Vaclav Kotesovec_, Aug 19 2015

%H Seiichi Manyama, <a href="/A156616/b156616.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Vaclav Kotesovec)

%H Ali H. Al-Saedi, <a href="https://doi.org/10.1007/s11139-018-0036-5">Congruences for restricted plane overpartitions modulo 4 and 8</a>, Raman. J. 48 (2) (2019) 251

%H Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 18.

%H Mirjana Vuletic, <a href="http://dx.doi.org/10.1090/S0002-9947-08-04753-3">A generalization of MacMahon's formula</a>, Trans. Am. Math. Soc. 361 (2009) 2789-2804.

%F Convolve A000219 with A026007.

%F O.g.f.: exp( Sum_{n>=1} (sigma_2(2n) - sigma_2(n))/2 *x^n/n ), where sigma_2(n) is the sum of squares of divisors of n (A001157). - _Paul D. Hanna_, May 01 2010

%F a(n) ~ exp(1/12 + 3 * 2^(-4/3) * (7*Zeta(3))^(1/3) * n^(2/3)) * (7*Zeta(3))^(7/36) / (A * 2^(7/9) * sqrt(3*Pi) * n^(25/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - _Vaclav Kotesovec_, Aug 17 2015

%F a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A076577(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Apr 30 2017

%F G.f.: A(x) = exp( 2*Sum_{n >= 0} x^(2*n+1)/((2*n+1)*(1 - x^(2*n+1))^2) ). Cf. A000122 and A302237. - _Peter Bala_, Dec 23 2021

%t nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 17 2015 *)

%o (PARI) {a(n)=polcoeff(exp(sum(m=1,n,(sigma(2*m,2)-sigma(m,2))/2*x^m/m)+x*O(x^n)),n)} \\ _Paul D. Hanna_, May 01 2010

%Y Cf. A000219, A015128, A026007, A261384, A261386, A261389.

%Y Cf. A206622, A206623, A206624, A261519, A261520.

%Y Cf. A285462, A285447, A285460, A285461.

%Y Cf. A285446, A285458, A285459.

%Y Cf. A306081.

%K easy,nonn

%O 0,2

%A _R. J. Mathar_, Feb 11 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 00:07 EDT 2024. Contains 372497 sequences. (Running on oeis4.)