The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A151374 Number of walks within N^2 (the first quadrant of Z^2) starting at (0, 0), ending on the vertical axis and consisting of 2n steps taken from {(-1, -1), (-1, 0), (1, 1)}. 29

%I #174 Apr 06 2023 02:35:24

%S 1,2,8,40,224,1344,8448,54912,366080,2489344,17199104,120393728,

%T 852017152,6085836800,43818024960,317680680960,2317200261120,

%U 16992801914880,125210119372800,926554883358720,6882979133521920,51309480813527040,383705682605506560,2877792619541299200

%N Number of walks within N^2 (the first quadrant of Z^2) starting at (0, 0), ending on the vertical axis and consisting of 2n steps taken from {(-1, -1), (-1, 0), (1, 1)}.

%C A052701 shifted one place left. - _R. J. Mathar_, Dec 13 2008

%C Expansion of c(2*x), where c(x) is the g.f. of A000108. - _Philippe Deléham_, Feb 26 2009; simplified by _Alexander Burstein_, Jul 31 2018

%C From _Joerg Arndt_, Oct 22 2012: (Start)

%C Also the number of strings of length 2*n of two different types of balanced parentheses.

%C For example, a(1) = 2, since the two possible strings of length 2 are [] and (), a(2) = 8, since the 8 possible strings of length 4 are (()), [()], ([]), [[]], ()(), [](), ()[], and [][].

%C The number of strings of length 2*n of t different types of balanced parentheses is given by t^n * A000108(n): there are n opening parentheses in the strings, giving t^n choices for the type (the closing parentheses are chosen to match). (End)

%C Number of Dyck paths of length 2n in which the step U=(1,1) come in 2 colors. - _José Luis Ramírez Ramírez_, Jan 31 2013

%C Row sums of triangle in A085880. - _Philippe Deléham_, Nov 15 2013

%C Hankel transform is 2^(n+n^2) = A053763(n+1). - _Philippe Deléham_, Nov 15 2013

%H Vincenzo Librandi, <a href="/A151374/b151374.txt">Table of n, a(n) for n = 0..200</a>

%H Paul Barry, <a href="https://arxiv.org/abs/1803.10297">Generalized Eulerian Triangles and Some Special Production Matrices</a>, arXiv:1803.10297 [math.CO], 2018.

%H Paul Barry, <a href="https://arxiv.org/abs/1912.01126">Riordan arrays, the A-matrix, and Somos 4 sequences</a>, arXiv:1912.01126 [math.CO], 2019.

%H Mireille Bousquet-Mélou and Marni Mishna, <a href="http://arxiv.org/abs/0810.4387">Walks with small steps in the quarter plane</a>, arXiv:0810.4387 [math.CO], 2008-2009.

%H J. Bouttier, P. Di Francesco and E. Guitter, <a href="http://dx.doi.org/10.1016/j.nuclphysb.2003.09.046">Statistics of planar graphs viewed from a vertex: a study via labeled trees</a>, Nucl. Phys. B, Vol. 675, No. 3 (2003), pp. 631-660. See p. 631, eq. (3.3).

%H Marek Bożejko, Maciej Dołęga, Wiktor Ejsmont and Światosław R. Gal, <a href="https://arxiv.org/abs/2104.14530">Reflection length with two parameters in the asymptotic representation theory of type B/C and applications</a>, arXiv:2104.14530 [math.RT], 2021.

%H Vedran Čačić and Vjekoslav Kovač, <a href="http://arxiv.org/abs/1309.3408">On the fraction of IL formulas that have normal forms</a>, arXiv:1309.3408 [math.LO], 2013.

%H Stefano Capparelli and Alberto Del Fra, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Capparelli/cap3.html">Dyck Paths, Motzkin Paths, and the Binomial Transform</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.8.5.

%H Chatel, Grégory; Pilaud, Vincent <a href="https://doi.org/10.1016/j.aim.2017.02.027">Cambrian Hopf algebras.</a> Adv. Math. 311, 598-633 (2017). Prop. 3.

%H Zhi Chen and Hao Pan, <a href="http://arxiv.org/abs/1608.02448">Identities involving weighted Catalan-Schröder and Motzkin Paths</a>, arXiv:1608.02448 [math.CO], 2016. See eq. (1.13), a=b=2.

%H Nicolas Crampe, Julien Gaboriaud and Luc Vinet, <a href="https://arxiv.org/abs/2105.01086">Racah algebras, the centralizer Z_n(sl_2) and its Hilbert-Poincaré series</a>, arXiv:2105.01086 [math.RT], 2021.

%H Hsien-Kuei Hwang, Mihyun Kang and Guan-Huei Duh, <a href="https://doi.org/10.4230/LIPIcs.AofA.2018.29">Asymptotic Expansions for Sub-Critical Lagrangean Forms</a>, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.

%H Bradley Robert Jones, <a href="http://summit.sfu.ca/item/14554">On tree hook length formulas, Feynman rules and B-series</a>, Master's thesis, Simon Fraser University, 2014.

%H Georg Muntingh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Muntingh/muntingh2.html">Implicit Divided Differences, Little Schröder Numbers and Catalan Numbers</a>, J. Int. Seq., Vol. 15 (2012), Article 12.6.5; <a href="http://arxiv.org/abs/1204.2709">arXiv preprint</a>, arXiv:1204.2709 [math.CO], 2012.

%H L. Poulain d'Andecy, <a href="https://arxiv.org/abs/2304.00850">Centralisers and Hecke algebras in Representation Theory, with applications to Knots and Physics</a>, arXiv:2304.00850 [math.RT], 2023. See p. 64.

%F a(n) = 2^n * A000108(n). - _Philippe Deléham_, Feb 01 2009

%F From _Gary W. Adamson_, Jul 12 2011: (Start)

%F a(n) is the top left term in M^n, M = the following infinite square production matrix:

%F 2, 2, 0, 0, 0, 0, ...

%F 2, 2, 2, 0, 0, 0, ...

%F 2, 2, 2, 2, 0, 0, ...

%F 2, 2, 2, 2, 2, 0, ...

%F 2, 2, 2, 2, 2, 2, ...

%F ...

%F (End)

%F E.g.f.: KummerM(1/2, 2, 8*x). - _Peter Luschny_, Aug 26 2012

%F E.g.f.: Let F(x)=Sum_{n>=0} a(n)*x^n/(2*n)!, then F(x) = E(0)/(1-sqrt(x)) where E(k) = 1 - sqrt(x)/(1 - sqrt(x)/(sqrt(x) - (k+1)*(k+2)/2/E(k+1) )); (continued fraction ). - _Sergei N. Gladkovskii_, Apr 05 2013

%F G.f.: 1 + 4*x/(G(0)-4*x) where G(k) = k*(8*x+1) + 4*x + 2 - 2*x*(2*k+3)*(2*k+4)/G(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Apr 05 2013

%F G.f.: sqrt(2-8*x-2*sqrt(1-8*x))/(4*x). - _Mark van Hoeij_, May 10 2013

%F G.f.: (1-sqrt(1-8*x))/(4*x). - _Philippe Deléham_, Nov 15 2013

%F D-finite with recurrence (n+1)*a(n) + 4*(-2*n+1)*a(n-1) = 0. - _R. J. Mathar_, Mar 05 2014

%F a(n) = 4^n*2F1((1-n)/2,-n/2;1;1)/(n+1). - _Benedict W. J. Irwin_, Jul 12 2016

%F a(n) ~ 8^n*n^(-3/2)/sqrt(Pi). - _Ilya Gutkovskiy_, Jul 12 2016

%F From _Peter Bala_, Aug 17 2021: (Start)

%F a(n) = Sum_{k = 0..floor(n/2)} A046521(n,2*k)*Catalan(2*k).

%F G.f.: A(x) = 1/sqrt(1 - 4*x)*e(x/(1 - 4*x)), where e(x) = (c(x) + c(-x))/2 is the even part of the function c(x) = (1 - sqrt(1 - 4*x))/(2*x), the g.f. of the Catalan numbers A000108. Inversely, (c(x) + c(-x))/2 = 1/sqrt(1 + 4*x)*A(x/(1 + 4*x)).

%F x*A(x) = Series reversion of (x - 2*x^2). (End)

%F Sum_{n>=0} 1/a(n) = 68/49 + 96*arctan(1/sqrt(7)) / (49*sqrt(7)). - _Vaclav Kotesovec_, Nov 23 2021

%F Sum_{n>=0} (-1)^n/a(n) = 20/27 - 16*log(2)/81. - _Amiram Eldar_, Jan 25 2022

%F G.f.: 1/(1-2*x/(1-2*x/(1-2*x/(1-2*x/(1-2*x/(1-2*x/(1-2*x/(1-2*x/(1-...))))))))(continued fraction). - _Nikolaos Pantelidis_, Nov 20 2022

%F a(n) = 2*Sum_{k=1..n} a(k-1)*a(n-k), a(0) = 1. - _Mehdi Naima_, Jan 16 2023

%p A151374_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;

%p for w from 1 to n do a[w] := 2*(a[w-1]+add(a[j]*a[w-j-1],j=1..w-1)) od;

%p convert(a,list)end: A151374_list(23); # _Peter Luschny_, May 19 2011

%t aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[0, k, 2 n], {k, 0, 2 n}], {n, 0, 25}]

%o (Magma) [2^n * Catalan(n): n in [0..25]]; // _Vincenzo Librandi_, Oct 24 2012

%o (PARI) x='x+O('x^66); Vec(sqrt(2-8*x-2*sqrt(1-8*x))/(4*x)) \\ _Joerg Arndt_, May 11 2013

%o (Sage)

%o def A151374():

%o a, n = 1, 1

%o while True:

%o yield a

%o n += 1

%o a = a * (8*n - 12) // n

%o A = A151374()

%o print([next(A) for _ in range(24)]) # _Peter Luschny_, Nov 30 2016

%Y Cf. A000108, A046521, A052701, A053763, A085880.

%K nonn,walk

%O 0,2

%A _Manuel Kauers_, Nov 18 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 9 11:46 EDT 2024. Contains 373239 sequences. (Running on oeis4.)