The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A147315 L-matrix for Euler numbers A000111(n+1). 14

%I #90 Dec 17 2022 02:53:50

%S 1,1,1,2,3,1,5,11,6,1,16,45,35,10,1,61,211,210,85,15,1,272,1113,1351,

%T 700,175,21,1,1385,6551,9366,5901,1890,322,28,1,7936,42585,70055,

%U 51870,20181,4410,546,36,1,50521,303271,563970,479345,218925,58107,9240,870,45,1

%N L-matrix for Euler numbers A000111(n+1).

%C This is the inverse of the coefficient array for the orthogonal polynomials p(n,x) defined by: p(n,x)=if(n=-1,0,if(n=0,1,(x-n)p(n-1,x)-C(n,2)p(n-2,x))).

%C The Hankel array H for A000111(n+1) satisfies H=L*D*U with U the transpose of L.

%C Row sums are A000772(n+1) with e.g.f. dif(exp(-1)exp(sec(x)+tan(x)),x).

%C From _Peter Bala_, Jan 31 2011: (Start)

%C The following comments refer to the table with an offset of 1: i.e., both the row and column indexing starts at 1.

%C An increasing tree is a labeled rooted tree with the property that the sequence of labels along any path starting from the root is increasing. A000111(n) for n>=1 enumerates the number of increasing unordered trees on the vertex set {1,2,...,n}, rooted at 1, in which all outdegrees are <=2 (plane unary-binary trees in the notation of [Bergeron et al.])

%C The entry T(n,k) of the present table gives the number of forests of k increasing unordered trees on the vertex set {1,2,...,n} in which all outdegrees are <=2. See below for some examples.

%C For ordered forests of such trees see A185421. For forests of increasing ordered trees on the vertex set {1,2,...,n}, rooted at 1, in which all outdegrees are <=2, see A185422.

%C The Stirling number of the second kind Stirling2(n,k) is the number of partitions of the set [n] into k blocks. Arranging the elements in each block in ascending numerical order provides an alternative combinatorial interpretation for Stirling2(n,k) as counting forests of k increasing unary trees on n nodes. Thus we may view the present array, which counts increasing unary-binary trees, as generalized Stirling numbers of the second kind associated with A000111 or with the zigzag polynomials Z(n,x) of A147309 - see especially formulas (2) and (3) below.

%C See A145876 for generalized Eulerian numbers associated with A000111. (End)

%C The Bell transform of A000111(n+1). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 18 2016

%H Alois P. Heinz, <a href="/A147315/b147315.txt">Rows n = 0..140, flattened</a>

%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Barry3/barry84r2.html">A Note on Three Families of Orthogonal Polynomials defined by Circular Functions, and Their Moment Sequences</a>, Journal of Integer Sequences, Vol. 15 (2012), #12.7.2.

%H F. Bergeron, Ph. Flajolet and B. Salvy, <a href="http://algo.inria.fr/flajolet/Publications/BeFlSa92.pdf">Varieties of increasing trees</a>, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.

%H Tom Copeland, <a href="https://tcjpn.wordpress.com/2008/06/12/mathemagical-forests/">Mathemagical Forests</a>

%H Vladimir Kruchinin, <a href="http://arxiv.org/abs/1009.2565">Composition of ordinary generating functions</a>, arXiv:1009.2565 [math.CO], 2010.

%F From _Peter Bala_, Jan 31 2011: (Start)

%F The following formulas refer to the table with an offset of 1: i.e., both the row n and column k indexing start at 1.

%F GENERATING FUNCTION

%F E.g.f.:

%F (1)... exp(x*(sec(t)+tan(t)-1)) - 1 = Sum_{n>=1} R(n,x)*t^n/n!

%F = x*t + (x+x^2)*t^2/2! + (2*x+3*x^2+x^3)*t^3/3! + ....

%F TABLE ENTRIES

%F (2)... T(n,k) = (1/k!)*Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*Z(n,j),

%F where Z(n,x) denotes the zigzag polynomials as described in A147309.

%F Compare (2) with the formula for the Stirling numbers of the second kind

%F (3)... Stirling2(n,k) = (1/k!)*Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*j^n.

%F Recurrence relation

%F (4)... T(n+1,k) = T(n,k-1) + k*T(n,k) + (1/2)*k(k+1)*T(n,k+1).

%F ROW POLYNOMIALS

%F The row polynomials R(n,x) begin

%F R(1,x) = x

%F R(2,x) = x+x^2

%F R(3,x) = 2*x+3*x^2+x^3

%F They satisfy the recurrence

%F (5)... R(n+1,x) = x*{R(n,x)+R'(n,x) + (1/2)*R''(n,x)},

%F where ' indicates differentiation with respect to x. This should be compared with the recurrence satisfied by the Bell polynomials Bell(n,x)

%F (6)... Bell(n+1,x) = x*(Bell(n,x) + Bell'(n,x)). (End)

%F From _Vladimir Kruchinin_, Feb 17 2011: (Start)

%F Sum_{m=1..n} T(n,m) = A000772(n).

%F Sum_{m=1..2n-1} T(2n-1,m)* Stirling1(m,1) = A000364(n).

%F Let Co(n,k) = Sum_{j=1..k} binomial(k,j)*(if (n-k+j) is odd then 0 else if (n-k+j)/2<j then 0 else j) * 2^(-n+k+1) * binomial(n-k-1,(n-k+j)/2-1)/(n-k+j)) *(-1)^j))) + kron_delta(n,k), then

%F T(n,m) = m!* Sum_{k=m..n} (if n-k is odd then 0 else 2^(1-k)) * Sum_{i=0..floor(k/2)} (-1)^(floor((n+k)/2)-i) * binomial(k,i) * (2*i-k)^n)))) * Sum_{i=1..k} Co(i,m) * binomial(k-i+m-1,m-1), n>0.

%F (End)

%F T(n,m) = Sum_{k = 0..n-m} binomial(k+m,m)*((-1)^(n-k-m)+1)*Sum_{j=0..n-k-m} binomial(j+k+m,k+m)*(j+k+m+1)!*2^(-j-k-1)*(-1)^((n+k+m)/2+j+k+m)* Stirling2(n+1,j+k+m+1)/(m+1)!. - _Vladimir Kruchinin_, May 17 2011

%F The row polynomials R(n,x) are given by D^n(exp(x*t)) evaluated at t = 0, where D is the operator (1+t+t^2/2!)*d/dt. Cf. A008277 and A094198. See also A185422. - _Peter Bala_, Nov 25 2011

%e Triangle begins

%e 1;

%e 1, 1;

%e 2, 3, 1;

%e 5, 11, 6, 1;

%e 16, 45, 35, 10, 1;

%e 61, 211, 210, 85, 15, 1;

%e 272, 1113, 1351, 700, 175, 21, 1;

%e ...

%e The production array for L is the tridiagonal array

%e 1, 1;

%e 1, 2, 1;

%e 0, 3, 3, 1;

%e 0, 0, 6, 4, 1;

%e 0, 0, 0, 10, 5, 1;

%e 0, 0, 0, 0, 15, 6, 1;

%e 0, 0, 0, 0, 0, 21, 7, 1;

%e 0, 0, 0, 0, 0, 0, 28, 8, 1,;

%e 0, 0, 0, 0, 0, 0, 0, 36, 9, 1;

%e From _Peter Bala_, Jan 31 2011: (Start)

%e Examples of forests:

%e The diagrams below are drawn so that the leftmost child of a binary node has the maximum label.

%e T(4,1) = 5. The 5 forests consisting of a single non-plane increasing unary-binary tree on 4 nodes are

%e ...4... ........ .......... ........... ...........

%e ...|... ........ .......... ........... ...........

%e ...3... .4...3.. .4........ ........4.. ........3..

%e ...|... ..\./... ..\....... ......./... ......./...

%e ...2... ...2.... ...3...2.. ..3...2.... ..4...2....

%e ...|... ...|.... ....\./... ...\./..... ...\./.....

%e ...1... ...1.... .....1.... ....1...... ....1......

%e T(4,2) = 11. The 11 forests consisting of two non-plane increasing unary-binary trees on 4 nodes are

%e ......... ...3.....

%e .3...2... ...|.....

%e ..\./.... ...2.....

%e ...1...4. ...|.....

%e ......... ...1...4.

%e .

%e ......... ...4.....

%e .4...2... ...|.....

%e ..\./.... ...2.....

%e ...1...3. ...|.....

%e ......... ...1...3.

%e .

%e ......... ...4.....

%e .4...3... ...|.....

%e ..\./.... ...3.....

%e ...1...2. ...|.....

%e ......... ...1...2.

%e .

%e ......... ...4.....

%e .4...3... ...|.....

%e ..\./.... ...3.....

%e ...2...1. ...|.....

%e ......... ...2...1.

%e .

%e ......... ......... ..........

%e ..2..4... ..3..4... ..4...3...

%e ..|..|... ..|..|... ..|...|...

%e ..1..3... ..1..2... ..1...2...

%e ......... ......... .......... (End)

%p A147315 := proc(n,k) n!*exp(x*(sec(t)+tan(t)-1)) - 1: coeftayl(%,t=0,n) ; coeftayl(%,x=0,k) ; end proc:

%p seq(seq(A147315(n,k),k=1..n),n=0..12) ; # _R. J. Mathar_, Mar 04 2011

%p # second Maple program:

%p b:= proc(u, o) option remember;

%p `if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))

%p end:

%p g:= proc(n) option remember; expand(`if`(n=0, 1, add(

%p g(n-j)*x*binomial(n-1, j-1)*b(j, 0), j=1..n)))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=1..n+1))(g(n+1)):

%p seq(T(n), n=0..10); # _Alois P. Heinz_, May 19 2021

%t t[n_, k_] := t[n, k] = t[n-1, k-1] + (k+1)*t[n-1, k] + 1/2*(k+1)*(k+2)*t[n-1, k+1]; t[n_, k_] /; (n < 0 || k < 0 || k > n) = 0; t[0, 0] = t[1, 0] = 1; Flatten[Table[t[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 47]] (* _Jean-François Alcover_, Jun 21 2011, after PARI prog. *)

%o (PARI) {T(n,k)=if(k<0||k>n,0,if(n==0,1,T(n-1,k-1)+(k+1)*T(n-1,k)+(k+1)*(k+2)/2*T(n-1,k+1)))} /* offset=0 */

%o (PARI) {T(n,k)=local(X=x+x*O(x^(n+2)));(n+1)!*polcoeff(polcoeff(exp(y*((1+sin(X))/cos(X)-1))-1,n+1,x),k+1,y)} /* offset=0 */

%o (PARI) /* Generate from the production matrix P: */

%o {T(n,k)=local(P=matrix(n,n,r,c,if(r==c-1,1,if(r==c,c,if(r==c+1,c*(c+1)/2)))));if(k<0||k>n,0,if(n==k,1,(P^n)[1,k+1]))}

%o (Maxima)

%o Co(n,k):=sum(binomial(k,j)*(if oddp(n-k+j) then 0 else if (n-k+j)/2<j then 0 else j*2^(-n+k+1)*binomial(n-k-1,(n-k+j)/2-1)/(n-k+j))*(-1)^j,j,1,k)+kron_delta(n,k);

%o A147315(n,m):=1/m!*sum((if oddp(n-k) then 0 else 2^(1-k)*sum((-1)^(floor((n+k)/2)-i)*binomial(k,i)*(2*i-k)^n,i,0,floor(k/2)))*(sum(Co(i,m)*binomial(k-i+m-1,m-1),i,1,k)),k,m,n); /* _Vladimir Kruchinin_, Feb 17 2011 */

%o (Maxima) T(n,m):=(sum(binomial(k+m,m)*((-1)^(n-k-m)+1)*sum(binomial(j+k+m,k+m)*(j+k+m+1)!*2^(-j-k-1)*(-1)^((n+k+m)/2+j+k+m)*stirling2(n+1,j+k+m+1), j,0,n-k-m), k,0,n-m))/(m+1)!; /* _Vladimir Kruchinin_, May 17 2011 */

%o (Sage) # uses[bell_matrix from A264428, A000111]

%o # Adds a column 1,0,0,0, ... at the left side of the triangle.

%o bell_matrix(lambda n: A000111(n+1), 10) # _Peter Luschny_, Jan 18 2016

%Y Cf. A145876, A147309, A185421, A185422, A185424.

%K nonn,tabl

%O 0,4

%A _Paul Barry_, Nov 05 2008

%E More terms from _Michel Marcus_, Mar 01 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 15:44 EDT 2024. Contains 372603 sequences. (Running on oeis4.)