The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143109 Let H(2,d) be the space of polynomials p(x,y) of two variables with nonnegative coefficients such that p(x,y)=1 whenever x + y = 1. a(n) is the number of different polynomials in H(2,d) with exactly n distinct monomials and of maximum degree minus two, i.e., of degree 2n-5. 2
0, 0, 0, 11, 38, 88, 198 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
It is unknown but conjectured that this is a sequence of finite numbers. Note that if we went one degree lower and look at polynomials of degree 2n-6, then there are infinitely many if any exist in H(2,d).
LINKS
J. P. D'Angelo, Simon Kos and Emily Riehl, A sharp bound for the degree of proper monomial mappings between balls, J. Geom. Anal., 13(4):581-593, 2003.
J. P. D'Angelo and J. Lebl, Complexity results for CR mappings between spheres, arXiv:0708.3232 [math.CV], 2008.
J. P. D'Angelo and J. Lebl, Complexity results for CR mappings between spheres, Internat. J. Math. 20 (2009), no. 2, 149-166.
J. Lebl and D. Lichtblau, Uniqueness of certain polynomials constant on a hyperplane, arXiv:0808.0284 [math.CV], 2008-2010.
J. Lebl and D. Lichtblau, Uniqueness of certain polynomials constant on a hyperplane, Linear Algebra Appl., 433 (2010), no. 4, 824-837
MATHEMATICA
See the paper by Lebl-Lichtblau.
CROSSREFS
Sequence in context: A063146 A139276 A010002 * A007585 A024202 A213775
KEYWORD
hard,nonn
AUTHOR
Jiri Lebl (jlebl(AT)math.uiuc.edu), Jul 25 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 07:05 EDT 2024. Contains 372666 sequences. (Running on oeis4.)