The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132623 Triangle T, read by rows, where T(n,k) = Sum_{j=1..n-k-1} [T^j](n-1,k) with T(n+1,n) = n+1 and T(n,n)=0 for n>=0, where T^n denotes the n-th matrix power of T. 6
0, 1, 0, 1, 2, 0, 3, 2, 3, 0, 14, 8, 3, 4, 0, 87, 46, 15, 4, 5, 0, 669, 338, 102, 24, 5, 6, 0, 6098, 2992, 861, 188, 35, 6, 7, 0, 64050, 30800, 8589, 1788, 310, 48, 7, 8, 0, 759817, 360110, 98238, 19800, 3275, 474, 63, 8, 9, 0, 10028799, 4701734, 1262208, 248624 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
LINKS
FORMULA
G.f. of column k: (k+1)*x^(k+1) = Sum_{n>=0} T(n,k) * x^n * (1-x)^(n-k) / Product_{j=k+1..n-1} (1+j*x).
T(n,k) = [x^n] { (k+1)*x^(k+1) - Sum_{m=k+1..n-1} T(m,k)*x^m*(1-x)^(m-k) / Product_{j=k+1..m-1} (1+j*x) } for n>k with T(n,k)=0 when k>=n.
EXAMPLE
Triangle begins:
0;
1, 0;
1, 2, 0;
3, 2, 3, 0;
14, 8, 3, 4, 0;
87, 46, 15, 4, 5, 0;
669, 338, 102, 24, 5, 6, 0;
6098, 2992, 861, 188, 35, 6, 7, 0;
64050, 30800, 8589, 1788, 310, 48, 7, 8, 0;
759817, 360110, 98238, 19800, 3275, 474, 63, 8, 9, 0; ...
-------------------------------------
MATRIX POWER SERIES PROPERTY.
[I - T]^-1 = Sum_{n>=0} T^n and equals T shifted up 1 row
(with '1's in the main diagonal):
1;
1, 1;
3, 2, 1;
14, 8, 3, 1;
87, 46, 15, 4, 1;
669, 338, 102, 24, 5, 1; ...
-------------------------------------
GENERATE T FROM MATRIX POWERS OF T.
Matrix square T^2 begins:
0;
0, 0;
2, 0, 0;
5, 6, 0, 0;
23, 14, 12, 0, 0;
143, 78, 27, 20, 0, 0; ...
so that T(4,1) = T(3,1) + [T^2](3,1) = 2 + 6 = 8;
and T(3,0) = T(2,0) + [T^2](2,0) = 1 + 2 = 3.
Matrix cube T^3 begins:
0;
0, 0;
0, 0, 0;
6, 0, 0, 0;
26, 24, 0, 0, 0;
165, 94, 60, 0, 0, 0; ...
so that T(5,1) = T(4,1) + [T^2](4,1) + [T^3](4,1) = 8 + 14 + 24 = 46;
and T(4,0) = T(3,0) + [T^2](3,0) + [T^3](3,0) = 3 + 5 + 6 = 14.
-------------------------------------
ILLUSTRATE G.F. FOR COLUMN k:
k=0: x = T(1,0)*x*(1-x) + T(2,0)*x^2*(1-x)^2/((1+x)) + T(3,0)*x^3*(1-x)^3/((1+x)*(1+2*x)) + T(4,0)*x^4*(1-x)^4/((1+x)*(1+2*x)*(1+3*x)) +...
k=1: 2*x^2 = T(2,1)*x^2*(1-x) + T(3,1)*x^3*(1-x)^2/((1+2*x)) + T(4,1)*x^4*(1-x)^3/((1+2*x)*(1+3*x)) + T(5,1)*x^5*(1-x)^4/((1+2*x)*(1+3*x)*(1+4*x)) +...
k=2: 3*x^3 = T(3,2)*x^3*(1-x) + T(4,2)*x^4*(1-x)^2/((1+3*x)) + T(5,2)*x^5*(1-x)^3/((1+3*x)*(1+4*x)) + T(6,2)*x^6*(1-x)^4/((1+3*x)*(1+4*x)*(1+5*x)) +...
PROG
(PARI) /* Using the matrix power formula: */
T(n, k)=local(M=if(n<=0, Mat(1), matrix(n, n, r, c, if(r>=c, T(r-1, c-1))))); if(n<k || k<0, 0, if(n==k, 0, if(n==k+1, n, sum(j=1, n-k-1, (M^j)[n, k+1]) )))
(PARI) /* Using the g.f. formula for columns: */
T(n, k)=if(n<k+1, 0, polcoeff((k+1)*x^(k+1)-sum(m=k+1, n-1, T(m, k)*x^m*(1-x)^(m-k)/prod(j=k+1, m-1, 1+j*x+x*O(x^n))), n))
for(n=0, 15, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A132624 (column 0), A208676, A208677, A208678.
Sequence in context: A359674 A323248 A324397 * A277890 A243403 A051613
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Aug 25 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 6 04:28 EDT 2024. Contains 373115 sequences. (Running on oeis4.)