The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A128099 Triangle read by rows: T(n,k) is the number of ways to tile a 3 X n rectangle with k pieces of 2 X 2 tiles and 3n-4k pieces of 1 X 1 tiles (0 <= k <= floor(n/2)). 20

%I #54 May 21 2023 17:11:20

%S 1,1,1,2,1,4,1,6,4,1,8,12,1,10,24,8,1,12,40,32,1,14,60,80,16,1,16,84,

%T 160,80,1,18,112,280,240,32,1,20,144,448,560,192,1,22,180,672,1120,

%U 672,64,1,24,220,960,2016,1792,448,1,26,264,1320,3360,4032,1792,128,1,28

%N Triangle read by rows: T(n,k) is the number of ways to tile a 3 X n rectangle with k pieces of 2 X 2 tiles and 3n-4k pieces of 1 X 1 tiles (0 <= k <= floor(n/2)).

%C Row sums are the Jacobsthal numbers (A001045).

%C Apparently, T(n,k)/2^n equals the probability P that n will occur as a partial sum in a randomly-generated infinite sequence of 1s and 2s with n compositions (ordered partitions) into (n-2k) 1s and k 2s. Example: T(6,2)=24; P = 3/8 (24/2^6) that 6 will occur as a partial sum in the sequence with 2 (6-2*2) 1s and 2 2s. - _Bob Selcoe_, Jul 06 2013

%C From _Johannes W. Meijer_, Aug 28 2013: (Start)

%C The antidiagonal sums are A077949 and the backwards antidiagonal sums are A052947.

%C Moving the terms in each column of this triangle, see the example, upwards to row 0 gives the Pell-Jacobsthal triangle A013609 as a square array. (End)

%C The numbers in rows of the triangle are along "first layer" skew diagonals pointing top-right in center-justified triangle given in A013609 ((1+2*x)^n) and along (first layer) skew diagonals pointing top-left in center-justified triangle given in A038207 ((2+x)^n), see links. - _Zagros Lalo_, Jul 31 2018

%C If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.000..., when n approaches infinity. - _Zagros Lalo_, Jul 31 2018

%C It appears that the rows of this array are the coefficients of the Jacobsthal polynomials (see MathWorld link). - _Michel Marcus_, Jun 15 2019

%D Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358

%H G. C. Greubel, <a href="/A128099/b128099.txt">Table of n, a(n) for the first 100 rows, flattened</a>

%H Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Falcao/falcao5.html">Intrinsic Properties of a Non-Symmetric Number Triangle</a>, J. Int. Seq., Vol. 26 (2023), Article 23.4.8.

%H Richard Fors, <a href="http://www.math.kth.se/xComb/fors.pdf">Independence Complexes of Certain Families of Graphs</a>, Master's thesis in Mathematics at KTH, presented Aug 19 2011.

%H R. J. Mathar, <a href="http://arxiv.org/abs/1609.03964">Tiling n x m rectangles with 1 x 1 and s x s squares</a> arXiv:1609.03964 [math.CO] (2016).

%H Zagros Lalo, <a href="/A128099/a128099.pdf">First layer skew diagonals in center-justified triangle of coefficients in expansion of (1 + 2x)^n</a>

%H Zagros Lalo, <a href="/A128099/a128099_1.pdf">First layer skew diagonals in center-justified triangle of coefficients in expansion of (2 + x)^n</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JacobsthalPolynomial.html">Jacobsthal Polynomial</a>

%F T(n, k) = 2^k*binomial(n-k,k) = 2^k*A011973(n,k).

%F G.f.: 1/(1-z-2*t*z^2).

%F Sum_{k=0..floor(n/2)} k*(T(n,k) = A095977(n-1).

%F From _Johannes W. Meijer_, Aug 28 2013: (Start)

%F T(n, k) = 2*T(n-2, k-1) + T(n-1, k) with T(n, 0) = 1 and T(n, k) = 0 for k < 0 and k > floor(n/2).

%F T(n, k) = A013609(n-k, k), n >= 0 and 0 <= k <= floor(n/2). (End)

%e Triangle starts:

%e 1;

%e 1;

%e 1, 2;

%e 1, 4;

%e 1, 6, 4;

%e 1, 8, 12;

%e 1, 10, 24, 8;

%e 1, 12, 40, 32;

%p T := proc(n,k) if k<=n/2 then 2^k*binomial(n-k,k) else 0 fi end: for n from 0 to 16 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form

%p T := proc(n, k) option remember: if k<0 or k > floor(n/2) then return(0) fi: if k = 0 then return(1) fi: 2*procname(n-2, k-1) + procname(n-1, k): end: seq(seq(T(n, k), k=0..floor(n/2)), n=0..13); # _Johannes W. Meijer_, Aug 28 2013

%t Table[2^k*Binomial[n - k, k] , {n,0,25}, {k,0,Floor[n/2]}] // Flatten (* _G. C. Greubel_, Dec 28 2016 *)

%t t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, t[n - 1, k] + 2 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* _Zagros Lalo_, Jul 31 2018 *)

%Y Cf. (Triangle sums) A001045, A095977, A077949, A052947, A113726, A052942, A077909.

%Y Cf. (Similar triangles) A008315, A011973, A102541.

%Y Cf. A013609, A038207

%Y Cf. A207538

%K nonn,tabf

%O 0,4

%A _Emeric Deutsch_, Feb 18 2007

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 15:34 EDT 2024. Contains 372603 sequences. (Running on oeis4.)