The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123965 Triangle read by rows: T(0,0)=1; T(n,k) is the coefficient of x^k in the polynomial (-1)^n*p(n,x), where p(n,x) is the characteristic polynomial of the n X n tridiagonal matrix with 3's on the main diagonal and -1's on the super- and subdiagonal (n >= 1; 0 <= k <= n). 6

%I #41 Apr 04 2024 10:11:13

%S 1,3,-1,8,-6,1,21,-25,9,-1,55,-90,51,-12,1,144,-300,234,-86,15,-1,377,

%T -954,951,-480,130,-18,1,987,-2939,3573,-2305,855,-183,21,-1,2584,

%U -8850,12707,-10008,4740,-1386,245,-24,1,6765,-26195,43398,-40426,23373,-8715,2100,-316,27,-1

%N Triangle read by rows: T(0,0)=1; T(n,k) is the coefficient of x^k in the polynomial (-1)^n*p(n,x), where p(n,x) is the characteristic polynomial of the n X n tridiagonal matrix with 3's on the main diagonal and -1's on the super- and subdiagonal (n >= 1; 0 <= k <= n).

%C Reversed polynomials = bisection of A152063: (1; 1,3; 1,6,8; 1,9,25,21; ...) having the following property: even-indexed Fibonacci numbers = Product_{k=1..n-2/2} (1 + 4*cos^2 k*Pi/n); n relating to regular polygons with an even number of edges. Example: The roots to x^3 - 9*x^2 + 25*x - 21 relate to the octagon and are such that the product with k=1,2,3 = (4.414213...)*(3)*(1.585786...) = 21. - _Gary W. Adamson_, Aug 15 2010

%H G. C. Greubel, <a href="/A123965/b123965.txt">Rows n = 0..50 of the triangle, flattened</a>

%H J. Dombrowski, <a href="https://projecteuclid.org/journals/pacific-journal-of-mathematics/volume-114/issue-2/Tridiagonal-matrix-representations-of-cyclic-selfadjoint-operators/pjm/1102708710.full">Tridiagonal matrix representations of cyclic self-adjoint operators</a>, Pacif. J. Math. 114 (2): 324-334 (1984).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TridiagonalMatrix.html">Tridiagonal Matrix</a>.

%F T(n, 0) = Fibonacci(2*n+2) = A001906(n+1).

%F Equals coefficients of the polynomials p(n,x) = (3-x)*p(n-1,x) - p(n-2,x), with p(0, x) = 1, p(1, x) = 3-x. - _Roger L. Bagula_, Oct 31 2006

%F From _G. C. Greubel_, Aug 20 2023: (Start)

%F T(n, k) = [x^k]( ChebyshevU(n, (3-x)/2) ).

%F Sum_{k=0..n} T(n, k) = n+1.

%F Sum_{k=0..n} (-1)^k*T(n, k) = A001353(n+1).

%F Sum_{k=0..floor(n/2)} T(n-k, k) = A000225(n+1).

%F Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A000244(n). (End)

%e Polynomials p(n, x):

%e 1,

%e 3 - x,

%e 8 - 6*x + x^2,

%e 21 - 25*x + 9*x^2 - x^3,

%e 55 - 90*x + 51*x^2 - 12*x^3 + x^4,

%e 144 - 300*x + 234*x^2 - 86*x^3 + 15*x^4 - x^5,

%e 377 - 954*x + 951*x^2 - 480*x^3 + 130*x^4 - 18*x^5 + x^6,

%e ...

%e Triangle begins:

%e 1;

%e 3, -1;

%e 8, -6, 1;

%e 21, -25, 9, -1;

%e 55, -90, 51, -12, 1;

%e 144, -300, 234, -86, 15, -1;

%e 377, -954, 951, -480, 130, -18, 1;

%e 987, -2939, 3573, -2305, 855, -183, 21, -1;

%e 2584, -8850, 12707, -10008, 4740, -1386, 245, -24, 1;

%e 6765, -26195, 43398, -40426, 23373, -8715, 2100, -316, 27, -1;

%e ...

%p with(linalg): a:=proc(i,j) if j=i then 3 elif abs(i-j)=1 then -1 else 0 fi end: for n from 1 to 10 do p[n]:=(-1)^n*charpoly(matrix(n,n,a),x) od: 1; for n from 1 to 10 do seq(coeff(p[n],x,j),j=0..n) od; # yields sequence in triangular form

%t (* First program *)

%t T[n_, m_]:= If[n==m, 3, If[n==m-1 || n==m+1, -1, 0]];

%t M[d_]:= Table[T[n, m], {n,d}, {m,d}];

%t Table[M[d], {d,10}];

%t Table[Det[M[d] - x*IdentityMatrix[d]], {d,10}];

%t Join[{{3}}, Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d,10}]]//Flatten

%t (* Second program *)

%t Table[CoefficientList[ChebyshevU[n, (3-x)/2], x], {n,0,12}]//Flatten (* _G. C. Greubel_, Aug 20 2023 *)

%o (Magma)

%o m:=12;

%o p:= func< n,x | Evaluate(ChebyshevU(n+1), (3-x)/2) >;

%o R<x>:=PowerSeriesRing(Integers(), m+2);

%o A123965:= func< n,k | Coefficient(R!( p(n,x) ), k) >;

%o [A123965(n,k): k in [0..n], n in [0..m]]; // _G. C. Greubel_, Aug 20 2023

%o (SageMath)

%o def A123965(n,k): return ( chebyshev_U(n, (3-x)/2) ).series(x, n+2).list()[k]

%o flatten([[A123965(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Aug 20 2023

%Y Cf. A000045, A000225, A000244, A001353, A001906, A123343, A125662 (absolute values), A152063.

%K sign,tabl

%O 0,2

%A _Gary W. Adamson_ and _Roger L. Bagula_, Oct 28 2006

%E Edited by _N. J. A. Sloane_, Nov 24 2006

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 8 17:52 EDT 2024. Contains 373227 sequences. (Running on oeis4.)