The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122399 a(n) = Sum_{k=0..n} k^n * k! * Stirling2(n,k). 34

%I #53 Aug 15 2022 10:30:02

%S 1,1,9,211,9285,658171,68504709,9837380491,1863598406805,

%T 450247033371451,135111441590583909,49300373690091496171,

%U 21495577955682021043125,11037123350952586270549531,6591700149366720366704735109

%N a(n) = Sum_{k=0..n} k^n * k! * Stirling2(n,k).

%C Conjecture: Let p be prime. The sequence obtained by reducing a(n) modulo p for n >= 1 is purely periodic with period p - 1. For example, modulo 7 the sequence becomes [1, 2, 1, 3, 3, 0, 1, 2, 1, 3, 3, 0, ...], with an apparent period of 6. Cf. A338040. - _Peter Bala_, May 31 2022

%H Vincenzo Librandi, <a href="/A122399/b122399.txt">Table of n, a(n) for n = 0..200</a>

%F E.g.f.: Sum_{n >= 0} (exp(n*x) - 1)^n. - _Vladeta Jovovic_, Sep 03 2006

%F E.g.f.: Sum_{n>=0} exp(n^2*x) / (1 + exp(n*x))^(n+1). - _Paul D. Hanna_, Oct 26 2014

%F E.g.f.: Sum_{n>=0} exp(-n*x) / (1 + exp(-n*x))^(n+1). - _Paul D. Hanna_, Oct 30 2014

%F O.g.f.: Sum_{n>=0} n^n * n! * x^n / Product_{k=1..n} (1 - n*k*x). - _Paul D. Hanna_, Jan 05 2013

%F Limit n->infinity (a(n)/n!)^(1/n)/n = ((1+exp(1/r))*r^2)/exp(1) = A317855/exp(1) = 1.162899527477400818845..., where r = 0.87370243323966833... is the root of the equation 1/(1+exp(-1/r)) = -r*LambertW(-exp(-1/r)/r). - _Vaclav Kotesovec_, Jun 21 2013

%F a(n) ~ c * A317855^n * (n!)^2 / sqrt(n), where c = 0.327628285569869481442286492410507030710253054522608... - _Vaclav Kotesovec_, Aug 09 2018

%F Let A(x) = 1 + x + 9*x^2/2! + 211*x^3/3! + ... denote the e.g.f. of the sequence. Let F(x) denote the series reversion of A(x) - 1 = x - 9*x^2/2 + 16*x^3/3 - 205*x^4/4 - 2714*x^5/5 - .... Then both dF/dx = 1 - 9*x + 16*x^2 - 205*x^3 - 2714*x^4 - ... and exp(F(x)) = 1 + x - 4*x^2 + x^3 - 38*x^4 - 606*x^5 - ... have integer coefficients. Note that 1 + series reversion(exp(F(x)) - 1) is the o.g.f. for A122400. - _Peter Bala_, Aug 09 2022

%e E.g.f.: A(x) = 1 + x + 9*x^2/2! + 211*x^3/3! + 9285*x^4/4! + 658171*x^5/5! + ...

%e such that

%e A(x) = 1 + (exp(x)-1) + (exp(2*x)-1)^2 + (exp(3*x)-1)^3 + (exp(4*x)-1)^4 + ...

%e The e.g.f. is also given by the series:

%e A(x) = 1/2 + exp(x)/(1+exp(x))^2 + exp(4*x)/(1+exp(2*x))^3 + exp(9*x)/(1+exp(3*x))^4 + exp(16*x)/(1+exp(4*x))^5 + exp(25*x)/(1+exp(5*x))^6 + ...

%e or, equivalently,

%e A(x) = 1/2 + exp(-x)/(1+exp(-x))^2 + exp(-2*x)/(1+exp(-2*x))^3 + exp(-3*x)/(1+exp(-3*x))^4 + exp(-4*x)/(1+exp(-4*x))^5 + exp(-5*x)/(1+exp(-5*x))^6 + ...

%p a := n -> add(k^n*k!*combinat[stirling2](n,k),k=0..n); # _Max Alekseyev_, Feb 01 2007

%t Flatten[{1,Table[Sum[k^n*k!*StirlingS2[n,k],{k,0,n}],{n,1,20}]}] (* _Vaclav Kotesovec_, Jun 21 2013 *)

%o (PARI) {a(n)=polcoeff(sum(m=0, n, m^m*m!*x^m/prod(k=1, m, 1-m*k*x+x*O(x^n))), n)}

%o for(n=0, 20, print1(a(n), ", ")) \\ _Paul D. Hanna_, Jan 05 2013

%o (PARI) {a(n)=n!*polcoeff(sum(k=0, n, (exp(k*x +x*O(x^n)) - 1)^k), n)}

%o for(n=0,25,print1(a(n),", ")) \\ _Paul D. Hanna_, Oct 26 2014

%o (PARI) /* From e.g.f. infinite series: */

%o \p100 \\ set precision

%o {A=Vec(serlaplace(sum(n=0, 500, 1.*exp(n^2*x +O(x^26))/(1 + exp(n*x +O(x^26)))^(n+1)) ))}

%o for(n=0, #A-1, print1(round(A[n+1]), ", ")) \\ _Paul D. Hanna_, Oct 30 2014

%Y Cf. A195415, A122400, A220181, A224899, A245322, A320083, A338040.

%K nonn,easy

%O 0,3

%A _Vladeta Jovovic_, Aug 31 2006

%E More terms from _Max Alekseyev_, Feb 01 2007

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 04:33 EDT 2024. Contains 372528 sequences. (Running on oeis4.)