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Name: Triangle T (n, k) of number of loopless multigraphs with n labeled
edges and k labeled vertices and without isolated vertices,n ≥ 1; 2 ≤ k ≤ 2n.

We will compare the properties of A122193 with those of A131689, the triangle
of numbers t(n, k) := k!S(n, k), where S(n, k) denotes the Stirling numbers of
the second kind. The �rst few rows of these two arrays are shown below. We
denote the row polynomials of A131689 by rn(x). These polynomials are
variously known as Fubini polynomials, geometric polynomials or ordered Bell
polynomials in the literature [Bo'05], [Bo'16], [DiKu'11]. We denote the row
polynomials of A122193 by Rn(x).

A131689 t(n, k)
n�k 0 1 2 3 4 5
0 1
1 0 1
2 0 1 2
3 0 1 6 6
4 0 1 14 36 24
5 0 1 30 150 240 120
· · ·

A122193 T (n, k)
n�k 0 1 2 3 4 5 6 7 8
0 1
1 0 0 1
2 0 0 1 6 6
3 0 0 1 24 114 180 90
4 0 0 1 78 978 4320 8460 7560 2520
· · ·

1) Double exponential generating functions.
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The double e.g.f. for A131689 is equivalent to the e.g.f. exp(x(exp(y)− 1)) for
the Stirling numbers of the second kind. The expansion of the double e.g.f. for
A122193 begins
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2) Recurrence equations for table entries.
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Proof of the recurrence for A122193.
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Partial di�erentiation with respect to y gives
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Applying the operator x d
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where the prime ′ indicates di�erentiation with respect to x.

2

https://oeis.org/A131689
https://oeis.org/A122193


Apply the operator x d
dx to (6) to �nd
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3) A combinatorial interpretation of T (n, k).

The row sums of A122193 begin [1, 13, 409, 23917, 2244361, ...]. This is
A055203 with the description �the number of di�erent relations between n
intervals on a line�. There is a link there to a monthly puzzle at IBM research,
set by Raul Saavedra - �Imagine you have n events of non-zero duration, in
how many di�erent ways could those events overlap in time?� An equivalent
formulation of the puzzle is to determine the number of di�erent arrangements
of n (nondegenerate) closed intervals on a line. In Saavedra's solution to his
problem he sets W (n, p) equal to the number of arrangements of n segments
with p endpoints and �nds a recurrence for W (n, p). This recurrence turns out
to be the same as (4) and with the same initial conditions. Thus we have the
following combinatorial interpretation for the entries of A122193: T (n, k)
equals the number of arrangements on a line of n (nondegenerate) �nite closed
intervals having k distinct endpoints.

4) Row polynomials as a black diamond product.

A131689

rn(x) = x� · · · �x (n factors) (9)

A122193

Rn(x) = x2 � · · · �x2 (n factors) (10)
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Dukes and White [DuWh'16], in their study of the combinatorics of web
diagrams and web matrices, introduced a commutative and associative
C-bilinear product of power series, which they named the black diamond
product and denoted by the symbol �. The black diamond product of
monomial polynomials is given by the formula
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The stated expressions for the row polynomials rn(x) and Rn(x) as black
diamond products may be easily proved by simple induction arguments,
making use of the following particular cases of (11):
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5) Formal series expansions of the row polynomials.

A131689

rn(x) =

∞∑
i=1

in
xi

(1 + x)i+1
, n ≥ 1 (12)

1

1− x
rn

(
x

1− x

)
=

∞∑
i=1

(
i

1

)n

xi, n ≥ 1 (13)

A122193

Rn(x) =

∞∑
i=2

(
i

2

)n
xi

(1 + x)i+1
, n ≥ 1 (14)

1

1− x
Rn

(
x

1− x

)
=

∞∑
i=2

(
i

2

)n

xi, n ≥ 1 (15)

Proof of the expansions for Rn(x).
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In [Ba'18, section 3.1] we showed that the power series Ei(x) :=
xi

(1+x)i ,

for i = 0, 1, 2, ... form a complete set of orthogonal idempotents in the algebra
of formal power series C[[x]] equipped with the black diamond product. In
particular, the idempotents are mutually orthogonal:

Ei �Ej = δijEi i, j ≥ 0.

Starting from the easily proved idempotent expansion
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The �rst few cases of this result are
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The numerator polynomials are the row polynomials of A154283.

6) Relationships between the polynomials rn(x) and Rn(x).
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Proof.

We prove (16), the proof of (17) being exactly similar. From (12), for n ≥ 1,
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7) Recurrence equation for row polynomials.
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Hence applying the operator 1
2x

2 d2

dx2 to (20) and using (21) we �nd

1

2
x2

d2

dx2
(
(1 + x)2Rn(x)

)
=

∞∑
i=2

(
i

2

)n+1
xi

(1 + x)i+1

= Rn+1(x).�

8) Re�ection property for row polynomials.
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9) Worpitzky-type identities.
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Proof of (25).

The proof is by induction. The base case n = 1 is trivial. Suppose the
identity holds for some n > 1, then by the recurrence relation (4),
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10) Finite power sums.
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11) Generalisations

It is clear that the above results can be extended to arrays with a double
e.g.f. of the form
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for m = 3, 4, ... For example, when m = 3 the table begins

n�k 3 4 5 6 7 8 9 10 11 12
1 1
2 1 12 30 20
3 1 60 690 2940 5670 5040 1680
4 1 252 8730 103820 581700 1767360 3087000 3099600 1663200 369600
...

This table is currently not in the OEIS. We denote the table entries by T̃ (n, k)

and the row poynomials by R̃(n, x). We summarise some of the properties of
this table below.
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