Notes on A122193

Peter Bala Jan 282018

Name: Triangle $T(n, k)$ of number of loopless multigraphs with n labeled edges and k labeled vertices and without isolated vertices, $n \geq 1 ; 2 \leq k \leq 2 n$.

We will compare the properties of A122193 with those of A131689, the triangle of numbers $t(n, k):=k!S(n, k)$, where $S(n, k)$ denotes the Stirling numbers of the second kind. The first few rows of these two arrays are shown below. We denote the row polynomials of A131689 by $r_{n}(x)$. These polynomials are variously known as Fubini polynomials, geometric polynomials or ordered Bell polynomials in the literature [Bo'05], [Bo'16], [DiKu'11]. We denote the row polynomials of A122193 by $R_{n}(x)$.

$n \backslash k$	0	1	2	3	4	5
0	1					
1	0	1				
2	0	1	2			
3	0	1	6	6		
4	0	1	14	36	24	
5	0	1	30	150	240	120
\cdots						

$\mathrm{n} \backslash k$	0	1	2	3	4	5	6	7	8
0	1								
1	0	0	1						
2	0	0	1	6	6				
3	0	0	1	24	114	180	90		
4	0	0	1	78	978	4320	8460	7560	2520
\cdots									

1) Double exponential generating functions.

A131689

$$
\begin{equation*}
\exp (-x) \sum_{n=0}^{\infty} \exp \left(\binom{n}{1} y\right) \frac{x^{n}}{n!}=\sum_{n=0}^{\infty} \sum_{k=0}^{n}\left(t(n, k) \frac{x^{k}}{k!}\right) \frac{y^{n}}{n!} \tag{1}
\end{equation*}
$$

A122193

$$
\begin{equation*}
\exp (-x) \sum_{n=0}^{\infty} \exp \left(\binom{n}{2} y\right) \frac{x^{n}}{n!}=\sum_{n=0}^{\infty} \sum_{k=0}^{2 n}\left(T(n, k) \frac{x^{k}}{k!}\right) \frac{y^{n}}{n!} \tag{2}
\end{equation*}
$$

The double e.g.f. for A131689 is equivalent to the e.g.f. $\exp (x(\exp (y)-1))$ for the Stirling numbers of the second kind. The expansion of the double e.g.f. for A122193 begins

$$
\begin{aligned}
\exp (-x) \sum_{n=0}^{\infty} \exp \left(\binom{n}{2} y\right) \frac{x^{n}}{n!}= & 1+\left(\frac{x^{2}}{2!}\right) \frac{y}{1!}+\left(\frac{x^{2}}{2!}+\frac{6 x^{3}}{3!}+\frac{6 x^{4}}{4!}\right) \frac{y^{2}}{2!} \\
& +\left(\frac{x^{2}}{2!}+\frac{24 x^{3}}{3!}+\frac{114 x^{4}}{4!}+\frac{180 x^{5}}{5!}+\frac{90 x^{6}}{6!}\right) \frac{y^{3}}{3!}+\cdots
\end{aligned}
$$

2) Recurrence equations for table entries.

A131689

$$
\begin{equation*}
t(n, k)=\binom{k}{1}(t(n-1, k)+t(n-1, k-1)) \tag{3}
\end{equation*}
$$

A122193

$$
\begin{equation*}
T(n, k)=\binom{k}{2}(T(n-1, k)+2 T(n-1, k-1)+T(n-1, k-2)) \tag{4}
\end{equation*}
$$

Proof of the recurrence for A122193.

Let $A(x, y)=\exp (-x) \sum_{n=0}^{\infty} \exp \left(\binom{n}{2} y\right) \frac{x^{n}}{n!}=\sum_{n=0}^{\infty} \sum_{k=0}^{2 n}\left(T(n, k) \frac{x^{k}}{k!}\right) \frac{y^{n}}{n!}$.
Partial differentiation with respect to y gives

$$
\begin{align*}
\frac{\partial A}{\partial y} & =\exp (-x) \sum_{n=0}^{\infty}\binom{n}{2} \exp \left(\binom{n}{2} y\right) \frac{x^{n}}{n!} \\
& =\sum_{n=1}^{\infty} \sum_{k=0}^{2 n}\left(T(n, k) \frac{x^{k}}{k!}\right) \frac{y^{n-1}}{(n-1)!} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{2 n+2}\left(T(n+1, k) \frac{x^{k}}{k!}\right) \frac{y^{n}}{n!} \tag{5}
\end{align*}
$$

Applying the operator $x \frac{d}{d x}$ to $\exp (x) A(x, y)=\sum_{n=0}^{\infty} \exp \left(\binom{n}{2} y\right) \frac{x^{n}}{n!}$ yields

$$
\begin{equation*}
x \exp (x)\left(A+A^{\prime}\right)=\sum_{n=0}^{\infty} n \exp \left(\binom{n}{2} y\right) \frac{x^{n}}{n!} \tag{6}
\end{equation*}
$$

where the prime ' indicates differentiation with respect to x.

Apply the operator $x \frac{d}{d x}$ to (6) to find

$$
\begin{equation*}
x \exp (x)\left((x+1) A+(2 x+1) A^{\prime}+x A^{\prime \prime}\right)=\sum_{n=0}^{\infty} n^{2} \exp \left(\binom{n}{2} y\right) \frac{x^{n}}{n!} \tag{7}
\end{equation*}
$$

Subtract (6) from (7) and divide the result by $2 \exp (x)$ to obtain

$$
\begin{equation*}
\left(\frac{x^{2} A+2 x^{2} A^{\prime}+x^{2} A^{\prime \prime}}{2}\right)=\exp (-x) \quad \sum_{n=0}^{\infty}\binom{n}{2} \exp \left(\binom{n}{2} y\right) \frac{x^{n}}{n!} \tag{8}
\end{equation*}
$$

The coefficient of $\frac{x^{k}}{k!} \frac{y^{n}}{n!}$ on the left of (8) is $\frac{k(k-1)}{2} T(n, k)+2 \frac{k(k-1)}{2} T(n, k-1)$ $+\frac{k(k-1)}{2} T(n, k-2)$, while the coefficient of $\frac{x^{k}}{k!} \frac{y^{n}}{n!}$ on the right side of (8) equals $T(n+1, k)$ by (5). Hence we have established the recurrence

$$
T(n+1, k)=\binom{k}{2}(T(n, k)+2 T(n, k-1)+T(n, k-2))
$$

3) A combinatorial interpretation of $T(n, k)$.

The row sums of A122193 begin [1, 13, 409, 23917, 2244361, ...]. This is A055203 with the description "the number of different relations between n intervals on a line". There is a link there to a monthly puzzle at IBM research, set by Raul Saavedra - "Imagine you have n events of non-zero duration, in how many different ways could those events overlap in time?" An equivalent formulation of the puzzle is to determine the number of different arrangements of n (nondegenerate) closed intervals on a line. In Saavedra's solution to his problem he sets $W(n, p)$ equal to the number of arrangements of n segments with p endpoints and finds a recurrence for $W(n, p)$. This recurrence turns out to be the same as (4) and with the same initial conditions. Thus we have the following combinatorial interpretation for the entries of A122193: $T(n, k)$ equals the number of arrangements on a line of n (nondegenerate) finite closed intervals having k distinct endpoints.
4) Row polynomials as a black diamond product.

A131689

$$
\begin{equation*}
\left.r_{n}(x)=x \cdots x \text { (} n \text { factors }\right) \tag{9}
\end{equation*}
$$

A122193

$$
\begin{equation*}
R_{n}(x)=x^{2} \diamond \cdots x^{2}(n \text { factors }) \tag{10}
\end{equation*}
$$

Dukes and White [DuWh'16], in their study of the combinatorics of web diagrams and web matrices, introduced a commutative and associative \mathbb{C}-bilinear product of power series, which they named the black diamond product and denoted by the symbol \leqslant. The black diamond product of monomial polynomials is given by the formula

$$
\begin{equation*}
x^{m} x^{n}=\sum_{k=0}^{m}\binom{n+k}{k}\binom{n}{m-k} x^{n+k} \tag{11}
\end{equation*}
$$

The stated expressions for the row polynomials $r_{n}(x)$ and $R_{n}(x)$ as black diamond products may be easily proved by simple induction arguments, making use of the following particular cases of (11):

$$
x x^{n}=n x^{n}+(n+1) x^{n+1}
$$

and

$$
x^{2} x^{n}=\binom{n}{2} x^{n}+2\binom{n+1}{2} x^{n+1}+\binom{n+2}{2} x^{n+2}
$$

5) Formal series expansions of the row polynomials.

$$
\begin{align*}
& \text { A131689 } \\
& \qquad \begin{array}{r}
r_{n}(x)=\sum_{i=1}^{\infty} i^{n} \frac{x^{i}}{(1+x)^{i+1}}, \quad n \geq 1 \\
\frac{1}{1-x} r_{n}\left(\frac{x}{1-x}\right)=\sum_{i=1}^{\infty}\binom{i}{1}^{n} x^{i}, \quad n \geq 1
\end{array} \tag{12}
\end{align*}
$$

A122193

$$
\begin{gather*}
R_{n}(x)=\sum_{i=2}^{\infty}\binom{i}{2}^{n} \frac{x^{i}}{(1+x)^{i+1}}, \quad n \geq 1 \tag{14}\\
\frac{1}{1-x} R_{n}\left(\frac{x}{1-x}\right)=\sum_{i=2}^{\infty}\binom{i}{2}^{n} x^{i}, \quad n \geq 1 \tag{15}
\end{gather*}
$$

Proof of the expansions for $R_{n}(x)$.

In [Ba'18, section 3.1] we showed that the power series $E_{i}(x):=\frac{x^{i}}{(1+x)^{i}}$, for $i=0,1,2, \ldots$ form a complete set of orthogonal idempotents in the algebra of formal power series $\mathbb{C}[[x]]$ equipped with the black diamond product. In particular, the idempotents are mutually orthogonal:

$$
E_{i} \triangleleft E_{j}=\delta_{i j} E_{i} \quad i, j \geq 0
$$

Starting from the easily proved idempotent expansion

$$
x^{2}=\frac{\binom{2}{2} x^{2}}{(1+x)^{3}}+\frac{\binom{3}{2} x^{3}}{(1+x)^{4}}+\frac{\binom{4}{2} x^{4}}{(1+x)^{5}}+\cdots
$$

we immediately obtain from (10)

$$
\begin{aligned}
R_{n}(x) & =x^{2} \cdots x^{2}(n \text { factors }) \\
& =\frac{\binom{2}{2}^{n} x^{2}}{(1+x)^{3}}+\frac{\binom{3}{2}^{n} x^{3}}{(1+x)^{4}}+\frac{\binom{4}{2}^{n} x^{4}}{(1+x)^{5}}+\cdots,
\end{aligned}
$$

proving (14). To prove (15) we substitute $\frac{x}{1-x}$ for the variable x in the previous result to give

$$
\frac{1}{1-x} R_{n}\left(\frac{x}{1-x}\right)=\sum_{i=2}^{\infty}\binom{i}{2}^{n} x^{i}
$$

The first few cases of this result are

$$
\begin{gathered}
\frac{x^{2}}{(1-x)^{3}}=\sum_{i=2}^{\infty}\binom{i}{2} x^{i} \\
\frac{x^{2}+4 x^{3}+x^{4}}{(1-x)^{5}}=\sum_{i=2}^{\infty}\binom{i}{2}^{2} x^{i} \\
\frac{x^{2}+20 x^{3}+48 x^{4}+20 x^{5}+x^{6}}{(1-x)^{7}}=\sum_{i=2}^{\infty}\binom{i}{2}^{3} x^{i}
\end{gathered}
$$

The numerator polynomials are the row polynomials of A154283.
6) Relationships between the polynomials $r_{n}(x)$ and $R_{n}(x)$.

$$
\begin{gather*}
R_{n}(x)=\frac{1}{2^{n}} \sum_{k=0}^{n}(-1)^{(n-k)}\binom{n}{k} r(n+k, x) \tag{16}\\
R_{n}(x)=\frac{x}{(1+x)} \frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k} r(n+k, x), \quad n \geq 1 \tag{17}
\end{gather*}
$$

Proof.

We prove (16), the proof of (17) being exactly similar. From (12), for $n \geq 1$,

$$
r_{n+k}(x)=\sum_{i=1}^{\infty} i^{n+k} \frac{x^{i}}{(1+x)^{i+1}}
$$

Hence

$$
\begin{aligned}
\frac{1}{2^{n}} \sum_{k=0}^{n}(-1)^{(n-k)}\binom{n}{k} r(n+k, x) & =\sum_{i=1}^{\infty}\left(\frac{1}{2^{n}} \sum_{k=0}^{n}(-1)^{(n-k)}\binom{n}{k} i^{k}\right) i^{n} \frac{x^{i}}{(1+x)^{i+1}} \\
& =\sum_{i=1}^{\infty}\left(\frac{(i-1)^{n}}{2^{n}}\right) i^{n} \frac{x^{i}}{(1+x)^{i+1}} \\
& =\sum_{i=2}^{\infty}\binom{i}{2}^{n} \frac{x^{i}}{(1+x)^{i+1}} \\
& =R_{n}(x)
\end{aligned}
$$

by (14).
7) Recurrence equation for row polynomials.

A131689

$$
\begin{equation*}
r_{n+1}(x)=x \frac{d}{d x}\left((1+x) r_{n}(x)\right) \tag{18}
\end{equation*}
$$

A122193

$$
\begin{equation*}
R_{n+1}(x)=\frac{1}{2} x^{2} \frac{d^{2}}{d x^{2}}\left((1+x)^{2} R_{n}(x)\right) \tag{19}
\end{equation*}
$$

Proof of (19) . From (14)

$$
R_{n}(x)=\sum_{i=2}^{\infty}\binom{i}{2}^{n} \frac{x^{i}}{(1+x)^{i+1}}
$$

Therefore

$$
\begin{equation*}
(1+x)^{2} R_{n}(x)=\sum_{i=2}^{\infty}\binom{i}{2}^{n} \frac{x^{i}}{(1+x)^{i-1}} \tag{20}
\end{equation*}
$$

Now one easily checks that

$$
\begin{equation*}
\frac{1}{2} x^{2} \frac{d^{2}}{d x^{2}}\left(\frac{x^{i}}{(1+x)^{i-1}}\right)=\frac{\binom{i}{2} x^{i}}{(1+x)^{i+1}} . \tag{21}
\end{equation*}
$$

Hence applying the operator $\frac{1}{2} x^{2} \frac{d^{2}}{d x^{2}}$ to (20) and using (21) we find

$$
\begin{aligned}
\frac{1}{2} x^{2} \frac{d^{2}}{d x^{2}}\left((1+x)^{2} R_{n}(x)\right) & =\sum_{i=2}^{\infty}\binom{i}{2}^{n+1} \frac{x^{i}}{(1+x)^{i+1}} \\
& =R_{n+1}(x) .
\end{aligned}
$$

8) Reflection property for row polynomials.

$$
\begin{align*}
& \mathrm{A} 131689 \\
& \qquad x r_{n}(-1-x)=(-1)^{n}(1+x) r_{n}(x), \quad n \geq 1 \tag{22}
\end{align*}
$$

A122193

$$
\begin{equation*}
x^{2} R_{n}(-1-x)=(1+x)^{2} R_{n}(x), \quad n \geq 1 \tag{23}
\end{equation*}
$$

Proof of (23).
We assume (22). By (16)

$$
R_{n}(x)=\frac{1}{2^{n}} \sum_{k=0}^{n}(-1)^{(n-k)}\binom{n}{k} r(n+k, x)
$$

Hence

$$
\begin{aligned}
R_{n}(-1-x) & =\quad \frac{1}{2^{n}} \sum_{k=0}^{n}(-1)^{(n-k)}\binom{n}{k} r(n+k,-1-x) \\
= & \frac{1+x}{x} \quad \frac{1}{2^{n}} \sum_{k=0}^{n}(-1)^{(n-k)}(-1)^{n+k}\binom{n}{k} r(n+k, x)[n \geq 1] \\
& =\frac{(1+x)^{2}}{x^{2}} R_{n}(x)
\end{aligned}
$$

for $n \geq 1$ by (17).
9) Worpitzky-type identities.

A131689

$$
\begin{equation*}
\sum_{k=1}^{n} t(n, k)\binom{x}{k}=\binom{x}{1}^{n} \tag{24}
\end{equation*}
$$

A122193

$$
\begin{equation*}
\sum_{k=2}^{2 n} T(n, k)\binom{x}{k}=\binom{x}{2}^{n} \tag{25}
\end{equation*}
$$

Proof of (25).
The proof is by induction. The base case $n=1$ is trivial. Suppose the identity holds for some $n>1$, then by the recurrence relation (4),

$$
\begin{aligned}
\sum_{k=2}^{2 n+2} T(n+1, k)\binom{x}{k}= & \sum_{k=2}^{2 n+2}\left(\binom{k}{2}(T(n, k)+2 T(n, k-1)+T(n, k-2))\right)\binom{x}{k} \\
= & \sum_{k=2}^{2 n+2} T(n, k)\binom{k}{2}\binom{x}{k}+2 \sum_{k=2}^{2 n+2} T(n, k-1)\binom{k}{2}\binom{x}{k} \\
& +\sum_{k=2}^{2 n+2} T(n, k-2)\binom{k}{2}\binom{x}{k} \\
= & \sum_{k=2}^{2 n+2} T(n, k)\binom{k}{2}\binom{x}{k}+2 \sum_{k=1}^{2 n+1} T(n, k)\binom{k+1}{2}\binom{x}{k+1} \\
& +\sum_{k=0}^{2 n} T(n, k)\binom{k+2}{2}\binom{x}{k+2} \\
= & \sum_{k=2}^{2 n} T(n, k)\left(\binom{k}{2}\binom{x}{k}+2\binom{k+1}{2}\binom{x}{k+1}+\binom{k+2}{2}\binom{x}{k+2}\right) \\
= & \sum_{k=2}^{2 n+2} T(n, k)\binom{x}{2}\binom{x}{k} \\
= & \binom{x}{2}
\end{aligned}
$$

by the induction hypothesis, and the proof by induction goes through.
10) Finite power sums.

$$
\begin{align*}
& \mathrm{A} 131689 \\
& \sum_{i=1}^{n-1} i^{m}=\sum_{k=1}^{m} t(m, k)\binom{n}{k+1} \quad m \geq 1 \tag{26}\\
& \mathrm{~A} 122193 \\
& \sum_{i=1}^{n-1}\binom{i}{2}^{m}
\end{aligned} \begin{aligned}
& =\sum_{k=2}^{2 m} T(m, k)\binom{n}{k+1} \quad m \geq 1 \tag{27}
\end{align*}
$$

Proof of (27). Follows immediately from (25) and the hockey-stick identity for binomial coefficients

$$
\sum_{i=k}^{N}\binom{i}{k}=\binom{N+1}{k+1}
$$

11) Generalisations

It is clear that the above results can be extended to arrays with a double e.g.f. of the form

$$
\exp (-x) \sum_{n=0}^{\infty} \exp \left(\binom{n}{m} y\right) \frac{x^{n}}{n!}
$$

for $m=3,4, \ldots$ For example, when $m=3$ the table begins

$n \backslash k$	3	4	5	6	7	8	9	10	11	12
1	1									
2	1	12	30	20						
3	1	60	690	2940	5670	5040	1680			
4	1	252	8730	103820	581700	1767360	3087000	3099600	1663200	369600
\ldots										

This table is currently not in the OEIS. We denote the table entries by $\widetilde{T}(n, k)$ and the row poynomials by $\widetilde{R}(n, x)$. We summarise some of the properties of this table below.

$$
\begin{gathered}
\widetilde{T}(n, k)=\sum_{i=0}^{k}(-1)^{(k-i)}\binom{k}{i}\binom{i}{3}^{n} \\
T(n+1, k)=\binom{k}{3}(T(n, k)+3 T(n, k-1)+3 T(n, k-2)+T(n, k-3)) \\
\widetilde{R}(n, x)=x^{3} \not \cdots x^{3}(n \text { factors }) \\
\widetilde{R}(n+1, x)=\frac{1}{3!} x^{3} \frac{d^{3}}{d x^{3}}\left((1+x)^{3} \widetilde{R}(n, x)\right) \\
x^{3} \widetilde{R}(n,-1-x)=(-1)^{n}(1+x)^{3} \widetilde{R}(n, x) \quad[n \geq 1] \\
\widetilde{R}(n, x)=\sum_{k=3}^{\infty}\binom{k}{3}^{n} \frac{x^{k}}{(1+x)^{k+1}} \quad[n \geq 1] \\
\sum_{k=3}^{3 n} \widetilde{T}(n, k)\binom{x}{k}=\binom{x}{3} \\
\sum_{i=1}^{n-1}\binom{i}{3}^{m}=\sum_{k=3}^{3 m} \widetilde{T}(m, k)\binom{n}{k+1} \quad[m \geq 1]
\end{gathered}
$$

REFERENCES

[Ba'18] P. Bala, Deformations of the Hadamard product of power series, uploaded to A131689
[Bo'05] K. N. Boyadzhiev, A series transformation formula and related polynomials, Int. J. Math. Math. Sci. 23 (2005), 3849-3866.
[Bo'16] K. N. Boyadzhiev, A. Dil, Geometric polynomials: properties and applications to series with zeta values, Analysis Math. 42 (3) (2016) 203-224.
[DiKu'11] A. Dil and V. Kurt, Investigating Geometric and Exponential Polynomials with Euler-Seidel Matrices Journal of Integer Sequences, Vol. 14 (2011), Article 11.4.6
[DuWh'16] M. Dukes and C. D. White, Web matrices: structural properties and generating combinatorial identities, Electronic Journal Of Combinatorics, 23(1) (2016), \#P1.45.
[IBM'01] IBM Ponder This, Jan01 2001

