The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106286 Number of orbits of the 4-step recursion mod n. 4
1, 4, 6, 28, 3, 24, 10, 220, 91, 12, 130, 240, 343, 40, 168, 1756, 19, 364, 22, 132, 81, 2068, 26, 1968, 253, 1372, 2336, 448, 2557, 672, 16, 14044, 1143, 76, 108, 4612, 1411, 88, 3084, 1860, 11815, 324, 22, 32092, 13213, 104, 50, 15792, 2467, 4012, 168, 17812 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Consider the 4-step recursion x(k)=x(k-1)+x(k-2)+x(k-3)+x(k-4) mod n. For any of the n^4 initial conditions x(1), x(2), x(3) and x(4) in Zn, the recursion has a finite period. Each of these n^4 vectors belongs to exactly one orbit. In general, there are only a few different orbit lengths (A106289) for each n. For instance, the 220 orbits mod 8 have lengths of 1, 5, 10 and 20.
LINKS
D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly, 67 (1960), 525-532.
Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
CROSSREFS
Cf. A015134 (orbits of Fibonacci sequences), A106285 (orbits of 3-step sequences), A106287 (orbits of 5-step sequences), A106289 (number of different orbit lengths), A106308 (n producing a simple orbit structure).
Sequence in context: A349647 A012896 A013078 * A066293 A204385 A341045
KEYWORD
nonn
AUTHOR
T. D. Noe, May 02 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 3 23:31 EDT 2024. Contains 373088 sequences. (Running on oeis4.)