The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A104150 Shifted factorial numbers: a(0)=0, a(n) = (n-1)!. 21

%I #69 Sep 08 2022 08:45:17

%S 0,1,1,2,6,24,120,720,5040,40320,362880,3628800,39916800,479001600,

%T 6227020800,87178291200,1307674368000,20922789888000,355687428096000,

%U 6402373705728000,121645100408832000,2432902008176640000,51090942171709440000,1124000727777607680000

%N Shifted factorial numbers: a(0)=0, a(n) = (n-1)!.

%C E.g.f.: Sum_{n>=1} (n-1)!*x^n/n! = Sum_{n>=1} x^n/n.

%C The shift law of the e.g.f.: if Sum_{n>=0} a(n)*x^n/n! = f(x), then Sum_{n>=0} a(n+1)*x^n/n! = d/dx f(x) and Sum_{n>=1} a(n-1)*x^n/n! = Integral f(x) dx.

%C The e.g.f. of A000142 (= n!) is 1/(1-x), so the e.g.f. of a(n)=(n-1)! is integral 1/(1-x) = -log(1-x).

%D A. N. Khovanskii. The Application of Continued Fractions and Their Generalizations to Problem in Approximation Theory. Groningen: Noordhoff, Netherlands, 1963. See p.141 (10.19)

%H Vincenzo Librandi, <a href="/A104150/b104150.txt">Table of n, a(n) for n = 0..200</a>

%H S. N. Gladkovskii, <a href="http://www.archive.org/details/AnalysisOfTheContinuedFractions.2.3-ed.2009-GladkovskiiSergeiNikolaevich">Analysis Of The Continued Fractions</a> (in Russian), see p.79 (5.1.21)

%F E.g.f. -log(1-x) = x + x^2/2 + x^3/3 + ... + x^n/n + ...

%F G.f.: x+x^2/(G(0)-x) where G(k) = 1 - (k+1)*x/(1 - x*(k+2)/G(k+1)); G(0) = W(1,1;-x)/W(1,2;-x), W(a,b,x) = 1 - a*b*x/1! + a*(a+1)*b*(b+1)*x^2/2! - ... + a*(a+1)*...*(a+n-1)*b*(b+1)*...*(b+n-1)*x^n/n! + ...; see [A. N. Khovanskii, p. 141 (10.19)], x-> -x; (continued fraction, 2-step). - _Sergei N. Gladkovskii_, Aug 14 2012

%F E.g.f.: (-x + 5*x^2/2 - 11*x^3/6 + x^4/4 + x^5/(W(0)-x)/4)/(x-1)^3 where W(k)= (x + 1)*k + x + 5 - x*(k+2)*(k+5)/W(k+1); see [S. N. Gladkovskii, p. 79 (5.1.21)]; (continued fraction, Euler's 1st kind, 1-step). - _Sergei N. Gladkovskii_, Aug 15 2012

%F G.f.: A(x) = Integral_{t>=0} x*exp(-t)/(1-x*t) dt = x/G(0) where G(k) = 1 - x*(k+1)/(1 - x*(k+1)/G(k+1) )); (continued fraction due to L. Euler and E. N. Laguerre). - _Sergei N. Gladkovskii_, Dec 24 2012

%F G.f.: x + x/Q(0), where Q(k)= 1/x - (2*k+2) - (k+2)*(k+1)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Apr 25 2013

%F G.f.: x/Q(0), where Q(k) = 1 - x*(k+1)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - _Sergei N. Gladkovskii_, May 20 2013

%F G.f.: x*G(0), where G(k) = 1 + x*(2*k+1)/(1 - x*(2*k+2)/(x*(2*k+2) + 1/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 07 2013

%F G.f.: x*G(0), where G(k) = 1 - x*(k+1)/(x*(k+1) - 1/(1 - x*(k+1)/(x*(k+1) - 1/G(k+1) ))); (continued fraction). - _Sergei N. Gladkovskii_, Aug 07 2013

%t Join[{0,1},Range[20]!] (* _Harvey P. Dale_, Dec 09 2013 *)

%o (Sage) [stirling_number1(n,1) for n in range(0, 22)] # _Zerinvary Lajos_, May 16 2009

%o (Magma) [0] cat [Factorial(n-1): n in [1..25]]; // _Vincenzo Librandi_, Dec 25 2012

%o (PARI) x='x+O('x^30); concat([0], Vec(serlaplace(-log(1-x)))) \\ _G. C. Greubel_, May 15 2018

%Y Cf. A000142.

%Y Column k=1 of A285849.

%Y Main diagonal of A295027 (for n > 0).

%K easy,nonn

%O 0,4

%A _Miklos Kristof_, Mar 08 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 13:22 EDT 2024. Contains 372715 sequences. (Running on oeis4.)