login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A103710 Decimal expansion of the ratio of the length of the latus rectum arc of any parabola to its semi latus rectum: sqrt(2) + log(1 + sqrt(2)). 11
2, 2, 9, 5, 5, 8, 7, 1, 4, 9, 3, 9, 2, 6, 3, 8, 0, 7, 4, 0, 3, 4, 2, 9, 8, 0, 4, 9, 1, 8, 9, 4, 9, 0, 3, 8, 7, 5, 9, 7, 8, 3, 2, 2, 0, 3, 6, 3, 8, 5, 8, 3, 4, 8, 3, 9, 2, 9, 9, 7, 5, 3, 4, 6, 6, 4, 4, 1, 0, 9, 6, 6, 2, 6, 8, 4, 1, 3, 3, 1, 2, 6, 6, 8, 4, 0, 9, 4, 4, 2, 6, 2, 3, 7, 8, 9, 7, 6, 1, 5, 5, 9, 1, 7, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The universal parabolic constant, equal to the ratio of the latus rectum arc of any parabola to its focal parameter. Like Pi, it is transcendental.
Just as all circles are similar, all parabolas are similar. Just as the ratio of a semicircle to its radius is always Pi, the ratio of the latus rectum arc of any parabola to its semi latus rectum is sqrt(2) + log(1 + sqrt(2)).
Note the remarkable similarity to sqrt(2) - log(1 + sqrt(2)), the universal equilateral hyperbolic constant A222362, which is a ratio of areas rather than of arc lengths. Lockhart (2012) says "the arc length integral for the parabola .. is intimately connected to the hyperbolic area integral ... I think it is surprising and wonderful that the length of one conic section is related to the area of another."
Is it a coincidence that the universal parabolic constant is equal to 6 times the expected distance A103712 from a randomly selected point in the unit square to its center? (Reese, 2004; Finch, 2012)
REFERENCES
H. Dörrie, 100 Great Problems of Elementary Mathematics, Dover, 1965, Problems 57 and 58.
P. Lockhart, Measurement, Harvard University Press, 2012, p. 369.
C. E. Love, Differential and Integral Calculus, 4th ed., Macmillan, 1950, pp. 286-288.
C. S. Ogilvy, Excursions in Geometry, Oxford Univ. Press, 1969, p. 84.
S. Reese, A universal parabolic constant, 2004, preprint.
LINKS
J. L. Diaz-Barrero and W. Seaman, A limit computed by integration, Problem 810 and Solution, College Math. J., 37 (2006), 316-318, equation (5).
S. R. Finch, Mathematical Constants, Errata and Addenda, 2012, section 8.1.
M. Hajja, Review Zbl 1291.51018, zbMATH 2015.
M. Hajja, Review Zbl 1291.51016, zbMATH 2015.
H. Khelif, L’arbelos, Partie II, Généralisations de l’arbelos, Images des Mathématiques, CNRS, 2014.
J. Pahikkala, Arc Length Of Parabola, PlanetMath.
S. Reese, J. Sondow, Eric W. Weisstein, MathWorld: Universal Parabolic Constant
J. Sondow, The parbelos, a parabolic analog of the arbelos, arXiv 2012, Amer. Math. Monthly, 120 (2013), 929-935.
E. Tsukerman, Solution of Sondow's problem: a synthetic proof of the tangency property of the parbelos, arXiv 2012, Amer. Math. Monthly, 121 (2014), 438-443.
FORMULA
Equals 2*Integral_{x = 0..1} sqrt(1 + x^2) dx. - Peter Bala, Feb 28 2019
EXAMPLE
2.29558714939263807403429804918949038759783220363858348392997534664...
MATHEMATICA
RealDigits[ Sqrt[2] + Log[1 + Sqrt[2]], 10, 111][[1]] (* Robert G. Wilson v Feb 14 2005 *)
PROG
(Maxima) fpprec: 100$ ev(bfloat(sqrt(2) + log(1 + sqrt(2)))); /* Martin Ettl, Oct 17 2012 */
(PARI) sqrt(2)+log(1+sqrt(2)) \\ Charles R Greathouse IV, Mar 08 2013
CROSSREFS
Sequence in context: A157216 A020776 A021002 * A178236 A093589 A319129
KEYWORD
cons,easy,nonn
AUTHOR
Sylvester Reese and Jonathan Sondow, Feb 13 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 9 17:14 EDT 2024. Contains 372354 sequences. (Running on oeis4.)