The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101786 G.f. satisfies: A(x) = 1 + x*A(x)/(1 - 2*x^2*A(x)^2). 1
1, 1, 1, 3, 9, 25, 77, 247, 801, 2657, 8969, 30635, 105785, 368745, 1295493, 4582767, 16309953, 58357313, 209798289, 757461011, 2745281705, 9984464761, 36428252541, 133293594343, 489028250465, 1798543861537, 6629635284505 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Formula may be derived using the Lagrange Inversion theorem (cf. A049124).
LINKS
FORMULA
a(n) = Sum_{k=0..[(n-1)/2]} C(n-k-1, k)*C(n, 2*k)*2^k/(2*k+1) for n>0, with a(0)=1.
G.f.: A(x) = (1/x)*Series_Reversion( x*(1 - 2*x^2)/(1+x - 2*x^2) ).
Recurrence: 2*n*(n+1)*(31*n^2 - 127*n + 120)*a(n) = 3*n*(62*n^3 - 285*n^2 + 359*n - 88)*a(n-1) + (62*n^4 - 378*n^3 + 1009*n^2 - 1425*n + 792)*a(n-2) + (n-3)*(682*n^3 - 3135*n^2 + 4133*n - 1272)*a(n-3) - 9*(n-4)*(n-3)*(31*n^2 - 65*n + 24)*a(n-4). - Vaclav Kotesovec, Sep 17 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 3/4 + 1/(4*sqrt(3/(35 - (176*2^(2/3))/(9959 + 465*sqrt(465))^(1/3) + 2*(19918 + 930*sqrt(465))^(1/3)))) + 1/2*sqrt(35/6 + (44*2^(2/3))/(3*(9959 + 465*sqrt(465))^(1/3)) - (9959 + 465*sqrt(465))^(1/3)/(3*2^(2/3)) + 127/2*sqrt(3/(35 - (176*2^(2/3))/ (9959 + 465*sqrt(465))^(1/3) + 2*(19918 + 930*sqrt(465))^(1/3)))) = 3.9027270552404829297969 = ... is the root of the equation 9 - 22*d - 2*d^2 - 6*d^3 + 2*d^4 = 0 and c = 0.68546565145612597016100560323891887595749... - Vaclav Kotesovec, Sep 17 2013
EXAMPLE
Generated from Fibonacci polynomials (A011973) and coefficients of odd powers of 1/(1-x):
a(1) = 1*1/1
a(2) = 1*1/1 + 0*1*2/3
a(3) = 1*1/1 + 1*3*2/3
a(4) = 1*1/1 + 2*6*2/3 + 0*1*2^2/5
a(5) = 1*1/1 + 3*10*2/3 + 1*5*2^2/5
a(6) = 1*1/1 + 4*15*2/3 + 3*15*2^2/5 + 0*1*2^3/7
a(7) = 1*1/1 + 5*21*2/3 + 6*35*2^2/5 + 1*7*2^3/7
a(8) = 1*1/1 + 6*28*2/3 + 10*70*2^2/5 + 4*28*2^3/7 + 0*1*2^4/9
This process is equivalent to the formula:
a(n) = Sum_{k=0..[(n-1)/2]} C(n-k-1,k)*C(n,2*k)*2^k/(2*k+1).
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n-k-1, k]*Binomial[n, 2*k]*2^k/(2*k+1), {k, 0, Floor[(n-1)/2]}], {n, 1, 20}]}] (* Vaclav Kotesovec, Sep 17 2013 *)
ShiftedReversion[ser_, n_, sgn_] := CoefficientList[(sgn/x)InverseSeries[Series[x sgn ser, {x, 0, n}]], x];
Jacobsthal := (2x^2 - 1)/((x + 1)(2x - 1)); (* with A001045(0) = 1 *)
ShiftedReversion[Jacobsthal, 27, -1] (* Peter Luschny, Jan 10 2019 *)
PROG
(PARI) {a(n)=if(n==0, 1, sum(k=0, (n-1)\2, binomial(n-k-1, k)*binomial(n, 2*k)*2^k/ (2*k+1)))}
CROSSREFS
Sequence in context: A001189 A212352 A198180 * A354647 A217995 A246653
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 16 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 14:28 EDT 2024. Contains 372519 sequences. (Running on oeis4.)