The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094262 Triangle related to the diagonals of the triangle of Stirling numbers of the second kind A008277. 11

%I #56 May 08 2018 15:11:55

%S 1,1,2,1,1,6,12,10,3,1,14,61,124,131,70,15,1,30,240,890,1830,2226,

%T 1600,630,105,1,62,841,5060,16990,35216,47062,40796,22225,6930,945,1,

%U 126,2772,25410,127953,401436,836976,1196532,1182195,795718,349020,90090,10395

%N Triangle related to the diagonals of the triangle of Stirling numbers of the second kind A008277.

%C The original name for this sequence was "Triangle read by rows giving the coefficients of formulas generating each variety of S2(n,k) (Stirling numbers of 2nd kind). The p-th row (p>=1) contains T(i,p) for i=1 to 2*p-1, where T(i,p) satisfies Sum_{i=1..2*p-1} T(i,p) * C(n-p,i-1)".

%C The terms of the n-th diagonal sequence of the triangle of Stirling numbers of the second kind A008277, i.e., (Stirling2(N + n - 1,N)), N>=1, are given by a polynomial in N of degree 2*n - 2. This polynomial may be expressed as a linear combination of the falling factorial polynomials binomial(N - n,0), binomial(N - n,1), ... , binomial(N - n,2*n - 2). This table gives the coefficients in these expansions.

%C The formulas obtained are those for Stirling2(N+1,N) (A000217), Stirling2(N+2,N) (A001296), Stirling2(N+3,N) (A001297), Stirling2(N+4,N) (A001298), Stirling2(N+5,N) (A112494), Stirling2(N+6,N) (A144969) and so on.

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H Milton Abramowitz and Irene A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a> (with Formulas, Graphs and Mathematical Tables), U.S. Dept. of Commerce, National Bureau of Standards, Applied Math. Series 55, 1964, 1046 pages (9th Printing: November 1970) - Combinatorial Analysis, Table 24.4, Stirling Numbers of the Second Kind (author: Francis L. Miksa), p. 835.

%H J. Fernando Barbero G., Jesús Salas, Eduardo J. S. Villaseñor, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i3p37">Generalized Stirling permutations and forests: Higher-order Eulerian and Ward numbers</a>, Electronic Journal of Combinatorics 22(3) (2015), #P3.37.

%H M. Kazarian, <a href="http://arxiv.org/abs/0809.3263">KP hierarchy for Hodge integrals</a>, p. 2, arxiv:0809.3263 [math.AG], 18 Sep 2008. [From _Tom Copeland_, Jun 12 2015]

%H Eric Weisstein's World of Mathematics, <a href="http://www.mathworld.wolfram.com/StirlingNumberoftheSecondKind.html">Stirling numbers of the 2nd kind</a>.

%F Apparently, a raising operator for bivariate polynomials P(n,u,z) having these coefficients is R = (u+z)^2 * z * d/dz with P(0,u,z) = z. E.g., R P(1,u,z) = R^2 P(0,u,z) = R^2 z = u^4 z + 6 u^3 z^2 + 12 u^2 z^3 + 10 u z^4 + 3 z^5 = P(2,u,z). See the Kazarian link. - _Tom Copeland_, Jun 12 2015

%F Reverse polynomials seem to be generated by 1 + exp[t*(x+1+z)^2*(1+z)d/dz]z evaluated at z = 0. - _Tom Copeland_, Jun 13 2015

%F From _Peter Bala_, Jun 14 2016: (Start)

%F T(n,k) = k*T(n,k) + 2*(k - 1)*T(n,k-1) + (k - 2)*T(n,k-2).

%F n-th diagonal of A008277: Stirling2(N + n - 1,N) = Sum_{k = 1..2*n - 1} T(n,k)*binomial(N - n,k - 1) for N = 1,2,3,....

%F Row polynomials R(n,z) = Sum_{k >= 1} k^(n+k-1)*( z/(1 + z)*exp(-z/(1 + z)) )^k/k!, n = 1,2,..., follows from the formula given in A008277 for the o.g.f.'s of the diagonals of the Stirling numbers of the second kind.

%F Consequently, R(n+1,z) = (1 + z)^2*z*d/dz(R(n,z)) for n >= 1 as conjectured above by Copeland.

%F R(n,z) = (1 + z)^n*P(n,z) where P(n,z) are the row polynomials of A134991.

%F R(n,z) = (1 + z)^(2*n+1)*B(n,z/(1 + z)), where B(n,z) are the row polynomials of the triangle of second-order Eulerian numbers A008517 (see Barbero et al., Section 6, equation 27). (End)

%F Based on the comment of Bala the row polynomials have the explicit form R(n, z) = (1+z)^(n+1)*Sum_{k=0..n}(z^k*Sum_{m=0..k}((-1)^(m+k)*binomial(n+k, n+m)* Stirling2(n+m,m))). - _Peter Luschny_, Jun 15 2016

%e Row 5 contains 1,30,240,890,1830,2226,1600,630,105, so the formula generating Stirling2(n+4,n) numbers (A001298) will be the following: 1 + 30*(n-5) + 240*C(n-5,2) + 890*C(n-5,3) + 1830*C(n-5,4) + 2226*C(n-5,5) + 1600*C(n-5,6) + 630*C(n-5,7) + 105*C(n-5,8). For example, taking n = 9 gives Stirling2(13,9) = 359502.

%e Triangle starts:

%e 1;

%e 1, 2, 1;

%e 1, 6, 12, 10, 3;

%e 1, 14, 61, 124, 131, 70, 15;

%e 1, 30, 240, 890, 1830, 2226, 1600, 630, 105;

%e ...

%e From _Peter Bala_, Jun 14 2016: (Start)

%e Connection with row polynomials of A134991:

%e R(2,z) = (1 + z)^2*z

%e R(3,z) = (1 + z)^2*(z + 3*z^2)

%e R(4,z) = (1 + z)^4*(z + 10*z^2 + 15*z^3)

%e R(5,z) = (1 + z)^5*(z + 25*z^2 + 105*z^3 + 105*z^4). (End)

%p row_poly := n -> (1+z)^(n+1)*add(z^k*add((-1)^(m+k)*binomial(n+k,n+m)*Stirling2(n+m,m), m=0..k), k=0..n): T_row := n -> seq(coeff(row_poly(n),z,j),j=1..2*n+1):

%p seq(T_row(n),n=0..6); # _Peter Luschny_, Jun 15 2016

%t Clear[T, q, u]; T[0] = q[1];T[n_] := Sum[m*(u^2*q[m] + 2*u*q[m+1] + q[m+2])*D[T[n-1], q[m]], {m, 1, 2*n+1}]; row[n_] := List @@ Expand[T[n-1]] /. {u -> 1, q[_] -> 1}; Table[row[n], {n, 1, 7}] // Flatten (* _Jean-François Alcover_, Jun 12 2015 *)

%Y Cf. A008277, A000217, A001296, A001297, A001298, A094216, A008275, A008517, A134991, A112494, A144969.

%K easy,nonn,tabf

%O 1,3

%A _André F. Labossière_, Jun 01 2004

%E Edited and Name changed by _Peter Bala_, Jun 16 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 05:24 EDT 2024. Contains 372498 sequences. (Running on oeis4.)