The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A093563 (6,1)-Pascal triangle. 17

%I #40 Feb 25 2018 22:54:12

%S 1,6,1,6,7,1,6,13,8,1,6,19,21,9,1,6,25,40,30,10,1,6,31,65,70,40,11,1,

%T 6,37,96,135,110,51,12,1,6,43,133,231,245,161,63,13,1,6,49,176,364,

%U 476,406,224,76,14,1,6,55,225,540,840,882,630,300,90,15,1,6,61,280,765,1380

%N (6,1)-Pascal triangle.

%C The array F(6;n,m) gives in the columns m >= 1 the figurate numbers based on A016921, including the octagonal numbers A000567, (see the W. Lang link).

%C This is the sixth member, d=6, in the family of triangles of figurate numbers, called (d,1) Pascal triangles: A007318 (Pascal), A029653, A093560-2, for d=1..5.

%C This is an example of a Riordan triangle (see A093560 for a comment and A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group). Therefore the o.g.f. for the row polynomials p(n,x):=Sum_{m=0..n} a(n,m)*x^m is G(z,x)=(1+5*z)/(1-(1+x)*z).

%C The SW-NE diagonals give A022096(n-1) = Sum_{k=0..ceiling((n-1)/2)} a(n-1-k,k), n >= 1, with n=0 value 5. Observation by _Paul Barry_, Apr 29 2004. Proof via recursion relations and comparison of inputs.

%C For a closed-form formula for generalized Pascal's triangle see A228576. - _Boris Putievskiy_, Sep 09 2013

%D Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.

%D Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.

%H Reinhard Zumkeller, <a href="/A093563/b093563.txt">Rows n = 0..125 of triangle, flattened</a>

%H Wolfdieter Lang, <a href="/A093563/a093563.pdf">First 10 rows and array of figurate numbers</a>

%F a(n, m)=F(6;n-m, m) for 0<= m <= n, otherwise 0, with F(6;0, 0)=1, F(6;n, 0)=6 if n>=1 and F(6;n, m):= (6*n+m)*binomial(n+m-1, m-1)/m if m>=1.

%F Recursion: a(n, m)=0 if m>n, a(0, 0)= 1; a(n, 0)=6 if n>=1; a(n, m)= a(n-1, m) + a(n-1, m-1).

%F G.f. column m (without leading zeros): (1+5*x)/(1-x)^(m+1), m>=0.

%F T(n, k) = C(n, k) + 5*C(n-1, k). - _Philippe Deléham_, Aug 28 2005

%F exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(6 + 13*x + 8*x^2/2! + x^3/3!) = 6 + 19*x + 40*x^2/2! + 70*x^3/3! + 110*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - _Peter Bala_, Dec 22 2014

%e Triangle begins

%e 1;

%e 6, 1;

%e 6, 7, 1;

%e 6, 13, 8, 1;

%e 6, 19, 21, 9, 1;

%e 6, 25, 40, 30, 10, 1;

%e ...

%t lim = 11; s = Series[(1 + 5*x)/(1 - x)^(m + 1), {x, 0, lim}]; t = Table[ CoefficientList[s, x], {m, 0, lim}]; Flatten[ Table[t[[j - k + 1, k]], {j, lim + 1}, {k, j, 1, -1}]] (* _Jean-François Alcover_, Sep 16 2011, after g.f. *)

%o (Haskell)

%o a093563 n k = a093563_tabl !! n !! k

%o a093563_row n = a093563_tabl !! n

%o a093563_tabl = [1] : iterate

%o (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [6, 1]

%o -- _Reinhard Zumkeller_, Aug 31 2014

%Y Row sums: A005009(n-1), n>=1, 1 for n=0, alternating row sums are 1 for n=0, 5 for n=2 and 0 else.

%Y Cf. A007318, A093564 (d=7), A228196, A228576.

%Y The column sequences give for m=1..9: A016921, A000567 (octagonal), A002414, A002419, A051843, A027810, A034265, A054487, A055848.

%K nonn,easy,tabl

%O 0,2

%A _Wolfdieter Lang_, Apr 22 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 04:17 EDT 2024. Contains 372720 sequences. (Running on oeis4.)