The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090192 Carlitz-Riordan q-Catalan numbers (recurrence version) for q = -1. 39

%I #118 May 13 2024 15:36:13

%S 1,1,0,-1,0,2,0,-5,0,14,0,-42,0,132,0,-429,0,1430,0,-4862,0,16796,0,

%T -58786,0,208012,0,-742900,0,2674440,0,-9694845,0,35357670,0,

%U -129644790,0,477638700,0,-1767263190,0,6564120420,0,-24466267020,0,91482563640,0,-343059613650,0

%N Carlitz-Riordan q-Catalan numbers (recurrence version) for q = -1.

%C Hankel transform is (-1)^C(n+1,2). - _Paul Barry_, Feb 15 2008

%H Fung Lam and Seiichi Manyama, <a href="/A090192/b090192.txt">Table of n, a(n) for n = 0..3338</a> (first 1002 terms from Fung Lam)

%F a(n+1) = Sum_{i=0..n} q^i*a(i)*a(n-i) with q=-1 and a(0)=1.

%F G.f.: 1+x*c(-x^2), where c(x) is the g.f. of A000108; a(n) = 0^n+C((n-1)/2)(-1)^((n-1)/2)(1-(-1)^n)/2, where C(n) = A000108(n). - _Paul Barry_, Feb 15 2008

%F G.f.: 1/(1-x/(1+x/(1-x/(1+x/(1-x/(1+x/(1-.... (continued fraction). - _Paul Barry_, Jan 15 2009

%F a(n) = 2 * a(n-1) - Sum_{k=1..n} a(k-1) * a(n-k) if n>0. - _Michael Somos_, Jul 23 2011

%F G.f.: (2*x-1+sqrt(1+4*x^2))/(2*x). - _Philippe Deléham_, Nov 07 2011

%F E.g.f.: x*hypergeom([1/2],[2,3/2],-x^2)=A(x)=x*(1-(x^2)/(Q(0)+(x^2)); Q(k)=2*(k^3)+9*(k^2)+(13-2*(x^2))*k-(x^2)+6+(x^2)*(k+1)*(k+2)*((2*k+3)^2)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Nov 22 2011

%F G.f.: 2 + (G(0)-1)/(2*x) where G(k)=1 - 4*x/(1 + 1/G(k+1) ); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Dec 08 2012

%F G.f.: 2 + (G(0) -1)/x, where G(k)= 1 - x/(1 + x/G(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Jul 17 2013

%F G.f.: 1 - 1/(2*x) + G(0)/(4*x), where G(k)= 1 + 1/(1 - 2*x^2*(2*k-1)/(2*x^2*(2*k-1) - (k+1)/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jul 17 2013

%F G.f.: 1- x/(Q(0) + 2*x^2), where Q(k)= (4*x^2 - 1)*k - 2*x^2 - 1 + 2*x^2*(k+1)*(2*k+1)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Jul 17 2013

%F G.f.: 1+ x/Q(0), where Q(k) = 2*k+1 - x^2*(1-4*(k+1)^2)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Jan 09 2014

%F D-finite with recurrence: (n+3)*a(n+2) = -4*n*a(n), a(0)=a(1)=1. For nonzero terms, a(n) ~ (-1)^((n+3)/2)/sqrt(2*Pi)*2^(n+1)/(n+1)^(3/2). - _Fung Lam_, Mar 17 2014

%F a(n) = hypergeom([-n+1,-n], [2], -1). - _Peter Luschny_, Sep 22 2014

%F G.f. A(x) satisfies A(x) = 1 / (1 - x * A(-x)). - _Michael Somos_, Dec 26 2016

%F From _Peter Bala_, May 13 2024: (Start)

%F a(n) = 2^n * Integral_{x = 0..1} LegendreP(n, x) dx.

%F a(n) = Sum_{k = 0..floor(n/2)} (-1)^k*binomial(n,k)*binomial(2*n-2*k,n)/(n-2*k+1).

%F a(n) = Sum_{k = 0..n} (-1)^k * 2^(n-k)*binomial(n,k)*binomial(n+k,k)/(k + 1).

%F a(n) = 2^n * hypergeom([n + 1, -n], [2], 1/2).

%F a(n) = 1/n * Sum_{k = 0..n} (-1)^k*binomial(n,k)*binomial(n,k+1) for n >= 1.

%F a(n) = 2^(n-1) * Gamma(1/2)/(Gamma((2-n)/2)*Gamma((n+3)/2)). (End)

%e G.f. = 1 + x - x^3 + 2*x^5 - 5*x^7 + 14*x^9 - 42*x^11 + 132*x^13 - 429*x^15 + ...

%p A090192_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;

%p for w from 1 to n do a[w] := a[w-1]-add(a[j]*a[w-j-1], j=1..w-1) od;

%p convert(a, list) end: A090192_list(48); # _Peter Luschny_, May 19 2011

%p a := n -> hypergeom([-n+1,-n],[2],-1); seq(round(evalf(a(n), 69)), n=0..48); # _Peter Luschny_, Sep 22 2014

%p a:= proc(n) if n::even then 0 else (-1)^((n-1)/2)*binomial(n+1,(n+1)/2)/(2*n) fi end proc: a(0):= 1:

%p seq(a(n), n=0..100); # _Robert Israel_, Sep 22 2014

%t CoefficientList[Series[(2 x - 1 + Sqrt[1 + 4*x^2])/(2 x), {x, 0, 50}],

%t x] (* _G. C. Greubel_, Dec 24 2016 *)

%t Table[Hypergeometric2F1[1 - n, -n, 2, -1], {n, 0, 48}] (* _Michael De Vlieger_, Dec 26 2016 *)

%o (PARI) {a(n) = my(A); if( n<0, 0, n++; A = vector(n); A[1] = 1; for( k=2, n, A[k] = 2 * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])}; /* _Michael Somos_, Jul 23 2011 */

%o (Sage)

%o def A090192_list(n) :

%o D = [0]*(n+2); D[1] = 1

%o b = True; h = 1; R = []

%o for i in range(2*n-1) :

%o if b :

%o for k in range(h,0,-1) : D[k] -= D[k-1]

%o h += 1; R.append(D[1])

%o else :

%o for k in range(1,h, 1) : D[k] += D[k+1]

%o b = not b

%o return R

%o A090192_list(49) # _Peter Luschny_, Jun 03 2012

%o (Ruby)

%o def A(q, n)

%o ary = [1]

%o (1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}

%o ary

%o end

%o def A090192(n)

%o A(-1, n)

%o end # _Seiichi Manyama_, Dec 24 2016

%o (PARI) Vec((2*x - 1 + sqrt(1+4*x^2))/(2*x) + O(x^50)) \\ _G. C. Greubel_, Dec 24 2016

%Y Cf. A227543.

%Y Cf. A015108 (q=-11), A015107 (q=-10), A015106 (q=-9), A015105 (q=-8), A015103 (q=-7), A015102 (q=-6), A015100 (q=-5), A015099 (q=-4), A015098 (q=-3), A015097 (q=-2), this sequence (q=-1), A000108 (q=1), A015083 (q=2), A015084 (q=3), A015085 (q=4), A015086 (q=5), A015089 (q=6), A015091 (q=7), A015092 (q=8), A015093 (q=9), A015095 (q=10), A015096 (q=11).

%Y Column k=1 of A290789.

%K sign

%O 0,6

%A _Philippe Deléham_, Jan 22 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 8 17:05 EDT 2024. Contains 373224 sequences. (Running on oeis4.)