login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090025 Number of distinct lines through the origin in 3-dimensional cube of side length n. 14
0, 7, 19, 49, 91, 175, 253, 415, 571, 805, 1033, 1423, 1723, 2263, 2713, 3313, 3913, 4825, 5491, 6625, 7513, 8701, 9811, 11461, 12637, 14497, 16045, 18043, 19807, 22411, 24163, 27133, 29485, 32425, 35065, 38593, 41221, 45433, 48727, 52831 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Equivalently, lattice points where the GCD of all coordinates = 1.
LINKS
FORMULA
a(n) = A090030(3, n).
a(n) = Sum_{k=1..n} moebius(k)*((floor(n/k)+1)^3-1). - Vladeta Jovovic, Dec 03 2004
a(n) = (n+1)^3 - Sum_{j=2..n+1} a(floor(n/j)). - Seth A. Troisi, Aug 29 2013
a(n) = 6*A015631(n) + 1 for n>=1. - Hugo Pfoertner, Mar 30 2021
EXAMPLE
a(2) = 19 because the 19 points with at least one coordinate=2 all make distinct lines and the remaining 7 points and the origin are on those lines.
MATHEMATICA
aux[n_, k_] := If[k == 0, 0, (k + 1)^n - k^n - Sum[aux[n, Divisors[k][[i]]], {i, 1, Length[Divisors[k]] - 1}]]; lines[n_, k_] := (k + 1)^n - Sum[Floor[k/i - 1]*aux[n, i], {i, 1, Floor[k/2]}] - 1; Table[lines[3, k], {k, 0, 40}]
a[n_] := Sum[MoebiusMu[k]*((Floor[n/k]+1)^3-1), {k, 1, n}]; Table[a[n], {n, 0, 39}] (* Jean-François Alcover, Nov 28 2013, after Vladeta Jovovic *)
PROG
(PARI) a(n)=(n+1)^3-sum(j=2, n+1, a(floor(n/j)))
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A090025(n):
if n == 0:
return 0
c, j = 1, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*A090025(k1)
j, k1 = j2, n//j2
return (n+1)**3-c+7*(j-n-1) # Chai Wah Wu, Mar 30 2021
CROSSREFS
Cf. A000225, A001047, A060867, A090020, A090021, A090022, A090023, A090024 are for n dimensions with side length 1, 2, 3, 4, 5, 6, 7, 8, respectively. A049691, A090025, A090026, A090027, A090028, A090029 are this sequence for 2, 3, 4, 5, 6, 7 dimensions. A090030 is the table for n dimensions, side length k.
Cf. A071778.
Sequence in context: A097039 A067651 A357301 * A348472 A003232 A018728
KEYWORD
nonn
AUTHOR
Joshua Zucker, Nov 25 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 03:15 EDT 2024. Contains 371964 sequences. (Running on oeis4.)