The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A085478 Triangle read by rows: T(n, k) = binomial(n + k, 2*k). 60

%I #189 Apr 23 2024 22:36:25

%S 1,1,1,1,3,1,1,6,5,1,1,10,15,7,1,1,15,35,28,9,1,1,21,70,84,45,11,1,1,

%T 28,126,210,165,66,13,1,1,36,210,462,495,286,91,15,1,1,45,330,924,

%U 1287,1001,455,120,17,1,1,55,495,1716,3003,3003,1820,680,153,19,1

%N Triangle read by rows: T(n, k) = binomial(n + k, 2*k).

%C Coefficient array for Morgan-Voyce polynomial b(n,x). A053122 (unsigned) is the coefficient array for B(n,x). Reversal of A054142. - _Paul Barry_, Jan 19 2004

%C This triangle is formed from even-numbered rows of triangle A011973 read in reverse order. - _Philippe Deléham_, Feb 16 2004

%C T(n,k) is the number of nondecreasing Dyck paths of semilength n+1, having k+1 peaks. T(n,k) is the number of nondecreasing Dyck paths of semilength n+1, having k peaks at height >= 2. T(n,k) is the number of directed column-convex polyominoes of area n+1, having k+1 columns. - _Emeric Deutsch_, May 31 2004

%C Riordan array (1/(1-x), x/(1-x)^2). - _Paul Barry_, May 09 2005

%C The triangular matrix a(n,k) = (-1)^(n+k)*T(n,k) is the matrix inverse of A039599. - _Philippe Deléham_, May 26 2005

%C The n-th row gives absolute values of coefficients of reciprocal of g.f. of bottom-line of n-wave sequence. - Floor van Lamoen (fvlamoen(AT)planet.nl), Sep 24 2006

%C Unsigned version of A129818. - _Philippe Deléham_, Oct 25 2007

%C T(n, k) is also the number of idempotent order-preserving full transformations (of an n-chain) of height k >=1 (height(alpha) = |Im(alpha)|) and of waist n (waist(alpha) = max(Im(alpha))). - _Abdullahi Umar_, Oct 02 2008

%C A085478 is jointly generated with A078812 as a triangular array of coefficients of polynomials u(n,x): initially, u(1,x) = v(1,x) = 1; for n>1, u(n,x) = u(n-1,x)+x*v(n-1)x and v(n,x) = u(n-1,x)+(x+1)*v(n-1,x). See the Mathematica section. - _Clark Kimberling_, Feb 25 2012

%C Per Kimberling's recursion relations, see A102426. - _Tom Copeland_, Jan 19 2016

%C Subtriangle of the triangle given by (0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 26 2012

%C T(n,k) is also the number of compositions (ordered partitions) of 2*n+1 into 2*k+1 parts which are all odd. Proof: The o.g.f. of column k, x^k/(1-x)^(2*k+1) for k >= 0, is the o.g.f. of the odd-indexed members of the sequence with o.g.f. (x/(1-x^2))^(2*k+1) (bisection, odd part). Thus T(n,k) is obtained from the sum of the multinomial numbers A048996 for the partitions of 2*n+1 into 2*k+1 parts, all of which are odd. E.g., T(3,1) = 3 + 3 from the numbers for the partitions [1,1,5] and [1,3,3], namely 3!/(2!*1!) and 3!/(1!*2!), respectively. The number triangle with the number of these partitions as entries is A152157. - _Wolfdieter Lang_, Jul 09 2012

%C The matrix elements of the inverse are T^(-1)(n,k) = (-1)^(n+k)*A039599(n,k). - _R. J. Mathar_, Mar 12 2013

%C T(n,k) = A258993(n+1,k) for k = 0..n-1. - _Reinhard Zumkeller_, Jun 22 2015

%C The n-th row polynomial in descending powers of x is the n-th Taylor polynomial of the algebraic function F(x)*G(x)^n about 0, where F(x) = (1 + sqrt(1 + 4*x))/(2*sqrt(1 + 4*x)) and G(x) = ((1 + sqrt(1 + 4*x))/2)^2. For example, for n = 4, (1 + sqrt(1 + 4*x))/(2*sqrt(1 + 4*x)) * ((1 + sqrt(1 + 4*x))/2)^8 = (x^4 + 10*x^3 + 15*x^2 + 7*x + 1) + O(x^5). - _Peter Bala_, Feb 23 2018

%C Row n also gives the coefficients of the characteristc polynomial of the tridiagonal n X n matrix M_n given in A332602: Phi(n, x) := Det(M_n - x*1_n) = Sum_{k=0..n} T(n, k)*(-x)^k, for n >= 0, with Phi(0, x) := 1. - _Wolfdieter Lang_, Mar 25 2020

%C It appears that the largest root of the n-th degree polynomial is equal to the sum of the distinct diagonals of a (2n+1)-gon including the edge, 1. The largest root of x^3 - 6x^2 + 5x - 1 is 5.048917... = the sum of (1 + 1.80193... + 2.24697...). Alternatively, the largest root of the n-th degree polynomial is equal to the square of sigma(2n+1). Check: 5.048917... is the square of sigma(7), 2.24697.... Given N = 2n+1, sigma(N) (N odd) can be defined as 1/(2*sin(Pi/(2*N)). Relating to the 9-gon, the largest root of x^4 - 10x^3 + 15x^2 - 7x + 1 is 8.290859..., = the sum of (1 + 1.879385... + 2.532088... + 2.879385...), and is the square of sigma(9), 2.879385... Refer to A231187 for a further clarification of sigma(7). - _Gary W. Adamson_, Jun 28 2022

%C For n >=1, the n-th row is given by the coefficients of the minimal polynomial of -4*sin(Pi/(4*n + 2))^2. - _Eric W. Weisstein_, Jul 12 2023

%C Denoting this lower triangular array by L, then L * diag(binomial(2*k,k)^2) * transpose(L) is the LDU factorization of A143007, the square array of crystal ball sequences for the A_n X A_n lattices. - _Peter Bala_, Feb 06 2024

%H Reinhard Zumkeller, <a href="/A085478/b085478.txt">Rows n = 0..125 of triangle, flattened</a>

%H J.P. Allouche and M. Mendes France, <a href="http://arxiv.org/abs/1202.0211">Stern-Brocot polynomials and power series</a>, arXiv preprint arXiv:1202.0211 [math.NT], 2012. - _N. J. A. Sloane_, May 10 2012

%H Peter Bala, <a href="/A264772/a264772_1.pdf">A 4-parameter family of embedded Riordan arrays</a>

%H E. Barcucci, A. Del Lungo, S. Fezzi, and R. Pinzani, <a href="http://dx.doi.org/10.1016/S0012-365X(97)82778-1">Nondecreasing Dyck paths and q-Fibonacci numbers</a>, Discrete Math., 170, 1997, 211-217.

%H Paul Barry, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Barry/barry84.html">A Catalan Transform and Related Transformations on Integer Sequences</a>, J. Integer Sequ., Vol. 8 (2005), Article 05.4.5.

%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Barry4/barry64.html">Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays</a>, JIS 12 (2009) 09.8.6.

%H Paul Barry and A. Hennessey, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Barry1/barry83.html">Notes on a Family of Riordan Arrays and Associated Integer Hankel Transforms </a>, JIS 12 (2009) 09.5.3.

%H Paul Barry, <a href="https://arxiv.org/abs/2011.10827">Notes on the Hankel transform of linear combinations of consecutive pairs of Catalan numbers</a>, arXiv:2011.10827 [math.CO], 2020.

%H Paul Barry, <a href="https://arxiv.org/abs/2011.13985">The second production matrix of a Riordan array</a>, arXiv:2011.13985 [math.CO], 2020.

%H Eduardo H. M. Brietzke, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL27/Brietzke/bri3.html">Recurrence Relations for Sums of Binomial Coefficients and Some Generalizations, Journal of Integer Sequences</a>, Vol. 27 (2024), Article 24.3.4.

%H E. Czabarka et al, <a href="https://doi.org/10.1016/j.disc.2018.06.032">Enumerations of peaks and valleys on non-decreasing Dyck paths</a>, Disc. Math. 341 (2018) 2789-2807, Theorem 3.

%H Emeric Deutsch and H. Prodinger, <a href="http://dx.doi.org/10.1016/S0304-3975(03)00222-6">A bijection between directed column-convex polyominoes and ordered trees of height at most three</a>, Theoretical Comp. Science, 307, 2003, 319-325.

%H James East and Nicholas Ham, <a href="https://arxiv.org/abs/1811.05735">Lattice paths and submonoids of Z^2</a>, arXiv:1811.05735 [math.CO], 2018.

%H A. Laradji and A. Umar, <a href="http://dx.doi.org/10.1007/s00233-005-0553-6">Combinatorial results for semigroups of order-preserving full transformations</a>, Semigroup Forum 72 (2006), 51-62. - _Abdullahi Umar_, Oct 02 2008

%H Donatella Merlini and Renzo Sprugnoli, <a href="https://doi.org/10.1016/j.disc.2016.08.017">Arithmetic into geometric progressions through Riordan arrays</a>, Discrete Mathematics 340.2 (2017): 160-174.

%H Yidong Sun, <a href="https://www.fq.math.ca/Papers1/43-4/paper43-4-10b.pdf">Numerical Triangles and Several Classical Sequences</a>, Fib. Quart. 43, no. 4, (2005) 359-370.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Morgan-VoycePolynomials.html">Morgan-Voyce Polynomials</a>

%F T(n, k) = (n+k)!/((n-k)!*(2*k)!).

%F G.f.: (1-z)/((1-z)^2-tz). - _Emeric Deutsch_, May 31 2004

%F Row sums are A001519 (Fibonacci(2n+1)). Diagonal sums are A011782. Binomial transform of A026729 (product of lower triangular matrices). - _Paul Barry_, Jun 21 2004

%F T(n, 0) = 1, T(n, k) = 0 if n<k; T(n, k) = Sum_{j>=0} T(n-1-j, k-1)*(j+1). T(0, 0) = 1, T(0, k) = 0 if k>0; T(n, k) = T(n-1, k-1) + T(n-1, k) + Sum_{j>=0} (-1)^j*T(n-1, k+j)*A000108(j). For the column k, g.f.: Sum_{n>=0} T(n, k)*x^n = (x^k) / (1-x)^(2*k+1). - _Philippe Deléham_, Feb 15 2004

%F Sum_{k=0..n} T(n,k)*x^(2*k) = A000012(n), A001519(n+1), A001653(n), A078922(n+1), A007805(n), A097835(n), A097315(n), A097838(n), A078988(n), A097841(n), A097727(n), A097843(n), A097730(n), A098244(n), A097733(n), A098247(n), A097736(n), A098250(n), A097739(n), A098253(n), A097742(n), A098256(n), A097767(n), A098259(n), A097770(n), A098262(n), A097773(n), A098292(n), A097776(n) for x=0,1,2,...,27,28 respectively. - _Philippe Deléham_, Dec 31 2007

%F T(2*n,n) = A005809(n). - _Philippe Deléham_, Sep 17 2009

%F A183160(n) = Sum_{k=0..n} T(n,k)*T(n,n-k). - _Paul D. Hanna_, Dec 27 2010

%F T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k). - _Philippe Deléham_, Feb 06 2012

%F O.g.f. for column k: x^k/(1-x)^(2*k+1), k >= 0. [See the o.g.f. of the triangle above, and a comment on compositions. - _Wolfdieter Lang_, Jul 09 2012]

%F E.g.f.: (2/sqrt(x + 4))*sinh((1/2)*t*sqrt(x + 4))*cosh((1/2)*t*sqrt(x)) = t + (1 + x)*t^3/3! + (1 + 3*x + x^2)*t^5/5! + (1 + 6*x + 5*x^2 + x^3)*t^7/7! + .... Cf. A091042. - _Peter Bala_, Jul 29 2013

%F T(n, k) = A065941(n+3*k, 4*k) = A108299(n+3*k, 4*k) = A194005(n+3*k, 4*k). - _Johannes W. Meijer_, Sep 05 2013

%F Sum_{k=0..n} (-1)^k*T(n,k)*A000108(k) = A000007(n) for n >= 0. - _Werner Schulte_, Jul 12 2017

%F Sum_{k=0..floor(n/2)} T(n-k,k)*A000108(k) = A001006(n) for n >= 0. - _Werner Schulte_, Jul 12 2017

%e Triangle begins as:

%e 1;

%e 1 1;

%e 1 3 1;

%e 1 6 5 1;

%e 1 10 15 7 1;

%e 1 15 35 28 9 1;

%e 1 21 70 84 45 11 1;

%e 1 28 126 210 165 66 13 1;

%e 1 36 210 462 495 286 91 15 1;

%e 1 45 330 924 1287 1001 455 120 17 1;

%e 1 55 495 1716 3003 3003 1820 680 153 19 1;

%e ...

%e From _Philippe Deléham_, Mar 26 2012: (Start)

%e (0, 1, 0, 1, 0, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, 0, ...) begins:

%e 1

%e 0, 1

%e 0, 1, 1

%e 0, 1, 3, 1

%e 0, 1, 6, 5, 1

%e 0, 1, 10, 15, 7, 1

%e 0, 1, 15, 35, 28, 9, 1

%e 0, 1, 21, 70, 84, 45, 11, 1

%e 0, 1, 28, 126, 210, 165, 66, 13, 1. (End)

%p T := (n,k) -> binomial(n+k,2*k): seq(seq(T(n,k), k=0..n), n=0..11);

%t (* First program *)

%t u[1, x_]:= 1; v[1, x_]:= 1; z = 13;

%t u[n_, x_]:= u[n-1, x] + x*v[n-1, x];

%t v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x];

%t Table[Expand[u[n, x]], {n, 1, z/2}]

%t Table[Expand[v[n, x]], {n, 1, z/2}]

%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

%t TableForm[cu]

%t Flatten[%] (* A085478 *)

%t Table[Expand[v[n, x]], {n, 1, z}]

%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

%t TableForm[cv]

%t Flatten[%] (* A078812 *) (*_Clark Kimberling_, Feb 25 2012 *)

%t (* Second program *)

%t Table[Binomial[n + k, 2 k], {n, 0, 12}, {k, 0, n}] // Flatten (* _G. C. Greubel_, Aug 01 2019 *)

%t CoefficientList[Table[Fibonacci[2 n + 1, Sqrt[x]], {n, 0, 10}], x] // Flatten (* _Eric W. Weisstein_, Jul 03 2023 *)

%t Join[{{1}}, CoefficientList[Table[MinimalPolynomial[-4 Sin[Pi/(4 n + 2)]^2, x], {n, 20}], x]] (* _Eric W. Weisstein_, Jul 12 2023 *)

%o (PARI) T(n,k) = binomial(n+k,n-k)

%o (Haskell)

%o a085478 n k = a085478_tabl !! n !! k

%o a085478_row n = a085478_tabl !! n

%o a085478_tabl = zipWith (zipWith a007318) a051162_tabl a025581_tabl

%o -- _Reinhard Zumkeller_, Jun 22 2015

%o (Magma) [Binomial(n+k, 2*k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Aug 01 2019

%o (Sage) [[binomial(n+k,2*k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Aug 01 2019

%o (GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial(n+k, 2*k) ))); # _G. C. Greubel_, Aug 01 2019

%Y Row sums: A001519. Signed versions: A123970, A129818.

%Y Cf. A000108, A001006, A007318, A098158, A183160, A078812, A091042.

%Y Cf. A258993, A025581, A051162, A054142, A332602.

%Y Cf. A231187, A143007.

%K nonn,tabl,easy

%O 0,5

%A _Philippe Deléham_, Aug 14 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 06:13 EDT 2024. Contains 372528 sequences. (Running on oeis4.)