The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084784 Binomial transform = self-convolution: first column of the triangle (A084783). 15

%I #49 Jun 09 2023 15:32:55

%S 1,1,2,6,25,137,944,7884,77514,877002,11218428,160010244,2516742498,

%T 43260962754,806650405800,16213824084864,349441656710217,

%U 8037981040874313,196539809431339642,5090276002949080318,139202688233361310841,4008133046329085884137

%N Binomial transform = self-convolution: first column of the triangle (A084783).

%C In the triangle (A084783), the diagonal (A084785) is the self-convolution of this sequence and the row sums (A084786) gives the differences of the diagonal and this sequence.

%C Ramanujan considers the continued fraction phi(x) = 1 / (x + 1 - 1^2 / (x + 3 - 2^2 / (x + 5 - 3^2 / (x + 7 - 4^2 / ...)))) and states that phi(x+1) approaches x phi(x)^2 as x gets large. The asymptotic expansion is phi(x) = 1/x - 1/x^2 + 2/x^3 - 6/x^4 + 24/x^5 - ... + (-1)^n * n! / x^(n+1) + ... but if we replace this with f(x) = a(0)/x - a(1)/x^2 + a(2)/x^3 - a(3)/x^4 + ... then formally f(x+1) = x f(x)^2 which is similar to my Feb 16 2006 formula. - _Michael Somos_, Jun 20 2015

%C This is also the Euler transform of A060223. - _Gus Wiseman_, Oct 16 2016

%D S. Ramanujan, Notebooks, Tata Institute of Fundamental Research, Bombay 1957 Vol. 1, see page 223.

%H Paul D. Hanna, <a href="/A084784/b084784.txt">Table of n, a(n) for n = 0..200</a>

%F G.f. satisfies A(n*x)^2 = n-th binomial transform of A(n*x).

%F G.f. A(x) satisfies 1 + x = A(x/(1 + x))^2 / A(x). - _Michael Somos_, Feb 16 2006

%F G.f.: A(x) = Product_{n>=1} 1/(1 - n*x)^(1/2^(n+1)). - _Paul D. Hanna_, Jun 16 2010

%F G.f.: A(x) = exp( Sum_{n>=1} A000670(n)*x^n/n ) where Sum_{n>=0} A000670(n)*x^n = Sum_{n>=0} n!*x^n/Product_{k=0..n} (1-k*x). - _Paul D. Hanna_, Sep 26 2011

%F a(n) ~ (n-1)! / (2 * (log(2))^(n+1)). - _Vaclav Kotesovec_, Nov 18 2014

%e G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 25*x^4 + 137*x^5 + 944*x^6 + ...

%e where

%e A(x) = (1-x)^(-1/4)*(1-2*x)^(-1/8)*(1-3*x)^(-1/16)*(1-4*x)^(-1/32)*...

%e Also,

%e log(A(x)) = x + 3*x^2/2 + 13*x^3/3 + 75*x^4/4 + 541*x^5/5 + 4683*x^6/6 + ... + A000670(n)*x^n/n + ...

%e thus, the logarithmic derivative equals the series:

%e A'(x)/A(x) = 1/(1-x) + 2!*x/((1-x)*(1-2*x)) + 3!*x^2/((1-x)*(1-2*x)*(1-3*x)) + 4!*x^3/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)) + ...

%p a:= proc(n) option remember;

%p 1+add(a(j)*(binomial(n,j)-a(n-j)), j=1..n-1)

%p end:

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Jun 09 2023

%t a[ n_]:= If[n<1, Boole[n==0], Module[{A= 1/x - 1/x^2}, Do [A= 2 A - Normal @ Series[ (x A^2) /. x -> x-1, {x, Infinity, k+1}], {k,2,n}]; (-1)^n Coefficient[A, x, -n-1]]]; (* _Michael Somos_, Jun 20 2015 *)

%t nn=20;CoefficientList[Series[Exp[Sum[Times[1/k,i!,StirlingS2[k,i],x^k],{k,nn},{i,k}]],{x,0,nn}],x] (* _Gus Wiseman_, Oct 18 2016 *)

%o (PARI) {a(n) = my(A); if( n<0, 0, A=1; for(k=1, n, A = truncate(A + O(x^k)) + x * O(x^k); A += A - 1 / subst(A^-2, x, x / (1 + x)) / (1 + x);); polcoeff(A, n))}; /* _Michael Somos_, Feb 18 2006 */

%o (PARI) /* Using o.g.f. exp( Sum_{n>=1} A000670(n)*x^n/n ): */

%o {a(n)=polcoeff(exp(intformal(sum(m=1, n+1, m!*x^(m-1)/prod(k=1, m, 1-k*x+x*O(x^n))))), n)}

%o for(n=0,30,print1(a(n),", "))

%o (Magma)

%o m:=50;

%o f:= func< n,x | Exp((&+[(&+[Factorial(j)*StirlingSecond(k,j)*x^k/k: j in [1..k]]): k in [1..n+2]])) >;

%o R<x>:=PowerSeriesRing(Rationals(), m+1); // A084784

%o Coefficients(R!( f(m,x) )); // _G. C. Greubel_, Jun 08 2023

%o (SageMath)

%o m=40

%o def f(n, x): return exp(sum(sum(factorial(j)*stirling_number2(k,j) *x^k/k for j in range(1,k+1)) for k in range(1,n+2)))

%o def A084784_list(prec):

%o P.<x> = PowerSeriesRing(QQ, prec)

%o return P( f(m,x) ).list()

%o A084784_list(m) # _G. C. Greubel_, Jun 08 2023

%o (Python) # after _Alois P. Heinz_

%o from functools import cache

%o from math import comb as binomial

%o @cache

%o def a(n: int) -> int:

%o return 1 + sum((binomial(n, j) - a(n - j)) * a(j) for j in range(1, n))

%o print([a(n) for n in range(22)]) # _Peter Luschny_, Jun 09 2023

%Y Cf. A000670, A060223, A084783, A084785, A084786, A195983.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jun 13 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 19:35 EDT 2024. Contains 372738 sequences. (Running on oeis4.)